
Comprehensive Code-Smells & Anti-Patterns Cheat-Sheet

(Full-stack: Backend / Laravel / PHP / Blade + Frontend / JS / CSS / Assets)

Targets: Laravel 12.x, PHP 8.4+, HTML Living Standard, CSS, ECMAScript 2025 (ES2025)
Generated on Nov 6, 2025

Below is an organized list combining common code items into a large, practical cheat-sheet. For each smell there’s a short

definition, a quick how-to-spot, and one fix/mitigation — with a note when it’s especially relevant to specific backend or

frontend technologies. Use this as a pre-submission checklist for marketplaces (Envato, CodeCanyon, ThemeForest, Creative

Market, TemplateMonster, Mojo Marketplace, Codester, and others).

1. General / Backend / Architecture smells

1. Duplicate Code

What: Same or very similar code in multiple places.

Spot: Repeated blocks, copy/paste patterns.

Fix: Extract to reusable function/service/trait. Use composer packages where sensible.

Laravel note: Extract repeated queries into Repositories / Eloquent scopes.

2. Long Method / Large Function

What: Functions that do many things or are very long.

Spot: Functions > ~50–100 lines doing multiple steps.

Fix: Break into smaller methods; apply SRP. Use Services, Jobs, or Form Request classes in Laravel.

3. Large Class / God Class / Blob

What: Class with too many responsibilities.

Spot: Class with dozens of methods, many dependencies.

Fix: Split responsibilities (Services, Domain objects, Repositories).

4. Long Parameter List

What: Methods with many parameters.

Spot: >4–5 params, repeated param groups.

Fix: Wrap parameters in a Value Object, DTO, or config object.

5. Primitive Obsession

What: Overuse of primitives instead of domain types.

Spot: Passing raw strings/ints for important concepts (email, money).

Fix: Create small Value Objects (Email, Money).

6. Data Clumps

What: Same group of variables passed together everywhere.

Spot: (host, port, user, pwd) used as separate parameters.

Fix: Wrap into a class/config struct.

7. Feature Envy

What: A method uses another class’s data more than its own.

Spot: Lots of calls like `other.getX(), other.getY()`.

Fix: Move method to the class it envies.

8. Middle Man

What: Class that delegates everything to another class.

Spot: Methods that just forward calls.

Fix: Remove middle man, or enrich it with behavior.

9. Message Chains

What: Long chained calls `a.getB().getC().do()`.

Spot: Deep dot chains.

Fix: Encapsulate with a method or hide details behind a service.

10. Magic Numbers / Hard-coded Literals

What: Raw values sprinkled through code.

Spot: Numbers/strings with no explanation.

Fix: Extract constants/config/env variables.

11. Dead Code / Commented-Out Code

What: Unused code blocks or files.

Spot: Large commented sections; files not referenced.

Fix: Remove; rely on VCS to retrieve history.

12. Poor / Inconsistent Naming

What: Ambiguous or inconsistent identifiers.

Spot: `doStuff()`, `tmp`, `data1`, or inconsistent conventions.

Fix: Use meaningful names, follow project naming conventions.

13. Conditional Complexity / Deep Nesting

What: Many nested if/else and complex boolean logic.

Spot: >3 nested levels; huge `switch` blocks.

Fix: Use Guard Clauses, Strategy pattern, polymorphism.

14. Spaghetti Code

What: Tangled control flow, no clear structure.

Spot: Hard to follow flow; global state changes in many places.

Fix: Refactor into modules/functions with clear boundaries.

15. Fat Controller / Fat Model (MVC-specific)

What: Controllers or models containing business logic, queries and presentation glue.

Spot: Controllers > 200–500 lines; models doing rendering or heavy business logic.

Fix: Move logic into Services, Actions, Jobs, or Domain classes; use Form Requests and Resources in Laravel.

16. Shotgun Surgery

What: One change forces edits in many files.

Spot: Frequent PRs touching many modules for small changes.

Fix: Improve cohesion; reduce coupling; introduce facades/abstractions.

17. Speculative Generality

What: Code written "for future features" that never come.

Spot: Overly generic hooks, unused extension points.

Fix: Simplify, YAGNI (You Aren’t Gonna Need It).

18. Hidden / Global Dependencies

What: Global state, singletons, service locators, static calls.

Spot: Use of globals, `window` (frontend), or static facades everywhere.

Fix: Use explicit dependency injection and interfaces.

19. Inappropriate Intimacy

What: Classes tightly access each other’s internals.

Spot: Frequent use of `friend`-like access or direct field access.

Fix: Respect encapsulation; add methods for required behavior.

20. Lazy Class / Lazy Element

What: Small class that adds little value.

Spot: Classes with 1–2 trivial methods.

Fix: Merge or remove, unless planned future role is justified.

21. Comments Instead of Clean Code

What: Comments explain what code does because code is unclear.

Spot: Many “what” comments.

Fix: Refactor so code is self-documenting; comments should explain why.

22. Switch Statements over Polymorphism

What: Large `switch`/`case` controlling behavior by type.

Spot: Many case branches; adding types requires editing switch.

Fix: Use polymorphism or strategy objects.

23. Parallel Inheritance Hierarchies

What: Two class hierarchies that mirror each other.

Spot: Changes duplicated across hierarchies.

Fix: Merge or rethink design, composition over inheritance.

24. Divergent Change

What: Class changed for many reasons frequently.

Spot: High churn in one file for many features.

Fix: Split responsibilities.

25. Refused Bequest

What: Subclass inherits behavior it doesn’t use.

Spot: Empty overrides or unused inherited fields.

Fix: Rework inheritance (prefer composition).

2. Backend / Laravel & PHP specific smells & notes

26. Eloquent Model Bloat

What: Models with business logic, view logic, and heavy query building.

Spot: Models with many helper methods, query builders and HTML snippets.

Fix: Keep models for relations/attributes; move business logic to Services/Actions; use Query Scopes and Repositories.

27. Controller Action Bloat

What: Controllers that handle validation, business logic, rendering, and responses.

Spot: Controller methods doing DB work, validation, and formatting.

Fix: Use Form Requests, Services, Responses (API Resources), Jobs.

28. Blade Templates Doing Business Logic

What: Heavy PHP logic inside Blade views.

Spot: Loops and conditionals that compute complex data in templates.

Fix: Compute in controller/service; use View Components, ViewModels/Presenters.

29. Overuse of Facades / Static Calls

What: Everywhere `Cache::get()` or static helpers, making testing harder.

Spot: Static calls in business logic or models.

Fix: Inject contracts/clients where possible; use dependency injection.

30. Query in Loop (N+1)

What: Running DB queries inside a loop resulting in many queries.

Spot: Looping through models and calling relations without eager loading.

Fix: Eager load relationships (`with()`), use bulk queries.

31. Tight Coupling to Framework

What: Code that relies heavily on framework globals and facades, making reuse/test hard.

Spot: Business code directly calls `request()`, `auth()` etc.

Fix: Isolate framework-level code to controllers/adapters.

32. No Configurable Environments / Secrets in Code

What: Secrets or environment-specific values hardcoded.

Spot: API keys, passwords in code.

Fix: Use `.env`, config files, and secrets management.

33. No Input Validation / Weak Validation

What: Inadequate validation before processing input.

Spot: Missing FormRequests or ad-hoc validation.

Fix: Use Laravel FormRequest with rules and authorize methods.

34. Improper Error Handling / Swallowing Exceptions

What: Catching exceptions and ignoring them.

Spot: `try { } catch (\Throwable $e) {}` with empty catch.

Fix: Log and handle errors, return appropriate responses, and bubble up when needed.

35. No Tests / Poor Test Coverage

What: Little or no automated tests.

Spot: No `phpunit`/Pest suites or CI checks.

Fix: Add unit, feature tests and CI checks; use test doubles, factories.

36. Heavy Migrations / No Migration Strategy

What: Large migration files with destructive operations in production paths.

Spot: Massive migrations that alter millions of rows.

Fix: Break migrations into smaller steps; use rolling changes, background scripts.

3. Frontend / UI / Browser-side smells

37. Bundle Size Bloat / Too Many Third-Party Libs

What: Large JS/CSS because of many heavy libraries.

Spot: Big `dist` size; slow initial load.

Fix: Tree-shake, replace heavy libs with lightweight alternatives, lazy load.

38. No Lazy Loading / Large Initial Payload

What: All assets loading at startup.

Spot: Slow Time-to-Interactive.

Fix: Code split, lazy load routes/components, defer non-critical assets.

39. Unoptimized Assets (images, fonts)

What: Large images, uncompressed assets, many fonts.

Spot: Slow page loads, large network transfers.

Fix: Compress, use responsive images, webp, font subsets.

40. Inline Styles / Logic in Templates

What: Putting JS/CSS or logic directly in HTML/Blade.

Spot: Event handlers and large style attributes in template.

Fix: Use external JS/CSS and component props; keep templates declarative.

41. Mutable Shared State / Side Effects in Components

What: Components that mutate shared objects causing unpredictable UI.

Spot: Many components reading/writing a global object.

Fix: Use immutable patterns or state managers with clear rules (Vuex/Redux/pinia).

42. Callback Hell / Nested Subscriptions

What: Deeply nested callbacks making flow hard to follow.

Spot: Many nested `then/catch` or nested event handlers.

Fix: Use async/await, observables, or flatten with Promises utilities.

43. Big/Monolithic Components

What: UI components that handle too many concerns.

Spot: Components with hundreds of lines of logic/markup.

Fix: Break into smaller presentational/container components or subcomponents.

44. Deep Props Drilling / Excessive Passing

What: Passing props through many intermediate components.

Spot: Components passing props they don’t use.

Fix: Use context/provide/inject or a state manager.

45. Tight Coupling UI↔Data Layer

What: UI tightly tied to data fetching/shape.

Spot: Component assumes exact API payloads and transforms heavily within template.

Fix: Use adapters or presentational layers; normalize data.

46. Untracked List Rendering (key problems)

What: Lists rendered without stable keys causing re-render issues.

Spot: UI flicker, wrong DOM reuse.

Fix: Use stable unique keys (IDs).

47. Dead UI Code / Orphan CSS

What: Styles or components no longer used.

Spot: Unused files, selectors unreferenced.

Fix: Remove unused code; run coverage for CSS (PurgeCSS).

48. Global Variables / Window Pollution

What: Putting app state on `window` or global objects.

Spot: `window.app = {...}` usage.

Fix: Use module scope, state managers, or DI.

49. Inline Event Handlers Everywhere

What: Many `onclick`/`onchange` inline handlers.

Spot: Inline handlers in HTML attributes.

Fix: Use unobtrusive event listeners or framework event binding.

50. Accessibility (a11y) Neglect

What: Missing alt tags, poor keyboard/ARIA support.

Spot: Failing accessibility audits.

Fix: Follow WCAG, use semantic HTML and ARIA where needed.

4. CSS / Styling smells

51. CSS Specificity War / !important Abuse

What: Overusing `!important` and overly specific selectors.

Spot: Large, complicated selectors and `!important` everywhere.

Fix: Adopt BEM/utility classes, simplify selector hierarchy.

52. Monolithic Stylesheet (no modularity)

What: Huge global stylesheet with everything.

Spot: One massive CSS file > thousands lines.

Fix: Modularize: CSS modules, scoped styles, component styles.

53. Repeated Styles (no variables or tokens)

What: Same colors, spacings duplicated.

Spot: Many literal color codes and sizes.

Fix: Use CSS variables, design tokens, SASS variables.

5. Performance & Deployment smells

54. Synchronous Blocking Calls / Long Requests

What: Blocking operations on the main thread/server code.

Spot: Slow responses, UI jank.

Fix: Use queues (Laravel Jobs), background processing, optimize queries.

55. No Caching or Wrong Caching Strategy

What: No caching or caching at wrong layer.

Spot: Re-run expensive queries on every request.

Fix: Cache views, queries, and computed values appropriately.

56. Memory Leaks (server or browser)

What: Unreleased resources leading to growing memory.

Spot: Increasing memory usage over time.

Fix: Close DB connections, remove listeners, avoid retaining large closures.

57. Overloaded Third-Party Integrations

What: Blocking on slow external API calls.

Spot: App waits on third-party responses synchronously.

Fix: Use async workers, retries, circuit breakers, timeouts.

6. Testing, CI, Documentation smells

58. No Continuous Integration / No Static Analysis

What: No automated checks (lint, tests, static analyzers).

Spot: PRs merged with failing tests or lint errors.

Fix: Add CI with linters (PHPCS, ESLint), PHPStan/Psalm, test suites.

59. Fragile Tests (brittle)

What: Tests that break on small UI/data changes.

Spot: Frequent test rewrites for unrelated changes.

Fix: Use stable selectors, avoid implementation detail assertions.

60. Poor / Missing Documentation

What: No README, missing installation or usage docs.

Spot: Reviewer confusion, many “how to” questions.

Fix: Provide README, usage examples, config notes, upgrade guides.

7. Security & Compliance smells

61. Unsanitized Input / XSS / SQL Injection Risks

What: Not sanitizing or escaping user input.

Spot: Direct echoing of input in Blade, raw queries concatenating strings.

Fix: Use parameterized queries, Eloquent/Query Builder, `{{ }}` for escaping in Blade, `escape()` where needed.

62. Secrets in Repo / Weak Access Controls

What: API keys, credentials committed to VCS.

Spot: Keys in `.env` checked into repo.

Fix: Remove, rotate keys, use secret management.

63. Missing CSRF / Broken Auth Checks

What: Forms/APIs lacking CSRF tokens or auth enforcement.

Spot: State changing endpoints without auth/CSRF protection.

Fix: Use Laravel’s CSRF middleware, properly guard routes.

8. Maintainability & UX smells

64. No Versioning / Upgrade Path

What: No clear upgrade or breaking change policy.

Spot: Package updates break apps; no changelog.

Fix: Semantic versioning, CHANGELOG, upgrade docs.

65. Monorepo or File Layout Confusion

What: Files scattered with inconsistent structure.

Spot: No predictable folder structure; test files scattered.

Fix: Adopt standard Laravel layout, group by feature where helpful.

66. Poor Logging / No Observability

What: Lack of logs or too noisy logs.

Spot: No meaningful error messages or metrics.

Fix: Structured logs, proper levels, integrate monitoring.

9. Anti-patterns (common named anti-patterns)

67. Shotgun Surgery (covered)

When a change requires many edits across modules.

68. Lava Flow

Dead code left in because developer afraid to remove.

Fix: Delete with confidence; use VCS.

69. Golden Hammer

Using one familiar tool for everything (e.g., solving everything with controllers).

Fix: Learn patterns; use the right tool for the job.

70. Cargo Cult Programming

Copying patterns without understanding.

Fix: Understand before applying; document why patterns exist.

10. Marketplace (Envato/ThemeForest/CodeCanyon) specific checklist — quick pass

• Structure: Project follows a clear folder structure and README with installation steps.

• Slim Controllers / Clean Models: No monolithic controllers/models.

• Minimal logic in views: Blade templates are presentation-only; heavy logic moved out.

• Sanitized output & security: XSS/CSRF/SQL injection safeguards present.

• No secrets/keys: `.env` not committed; sample `.env.example` provided.

• Assets optimized: images compressed, JS/CSS minified, bundle small.

• No commented large blocks / dead files: Clean repo.

• Consistent naming & coding standards: Linting and style applied (PSR-12 / ESLint).

• Composer & NPM usage clear: Dependency list and install commands documented.

• Test/smoke tests & CI: At least basic tests or manual test steps documented.

• License/commercial dependencies identified: No forbidden proprietary libs bundled.

• Upgrade notes and compatibility: Which Laravel/PHP versions supported clearly stated.

• Error handling / user feedback: Nice error pages/messages, logs.

• Demo content & seeders: Include seeders/fake data for demo, but not production secrets.

• Accessibility & Responsiveness: Basic responsiveness and accessibility checks.

11. How to detect smells quickly (tools & heuristics)

• Static analyzers: PHPStan, Psalm, PHPCS for PHP; ESLint, TypeScript compiler for frontend.

• Linters & formatters: Enforce naming/consistency rules.

• Bundle analyzers: Webpack / Vite bundle analyzers for JS size.

• Profiler: Xdebug/profiler for PHP, Chrome devtools for frontend.

• Code review checklist: Enforce small PRs, mandatory reviews.

• Automated tests: Run tests + mutation testing to assess quality.

12. Quick fixes / small refactor recipes

• Duplicate code → Extract method / Trait / Service.

• Long method → Extract function & name the pieces.

• Fat controller → Move business logic to Service or Action class.

• Blade logic → Move to View Component / Presenter / Controller.

• N+1 queries → Eager load or batch queries.

• Large bundle → Split code, lazy load routes/components.

• Hardcoded values → Move to config or constants.

• Global state → Introduce DI or state manager.

• Unclear names → Rename using meaningful domain terms.

13. Added items for 2025+ stack (new)

71. Missing Content Security Policy (CSP) & Subresource Integrity (SRI)

What: Lack of CSP/SRI increases XSS/supply‑chain risk.

Spot: Security headers absent; scripts/styles loaded from CDNs without integrity attributes.

Fix: Define a strict default-src and script-src policy; add SRI hashes to external assets; test in Report‑Only before enforcing.

Laravel: send headers via middleware.

72. CORS Misconfiguration

What: Overly permissive origins/headers allow data exfiltration.

Spot: Access-Control-Allow-Origin: with credentials; wildcards on private endpoints.

Fix: Lock CORS to known origins and methods; do not allow credentials with wildcards. Use Laravel’s cors.php config.

73. Unbounded Logging and PII in Logs

What: Logs grow indefinitely or include sensitive data.

Spot: No log rotation; tokens/emails/password hints present in logs.

Fix: Scrub PII at log boundaries; rotate and retain with limits; use Monolog processors.

74. Missing Rate Limiting / Throttling

What: Abuse of auth-sensitive endpoints possible.

Spot: No throttling on login/password reset/search endpoints.

Fix: Apply Laravel rate limiters (per IP/user); add CAPTCHA or WebAuthn/passkeys for abuse‑prone flows.

75. No Dependency Pinning / Supply-Chain Risk

What: Unpinned composer/npm versions and unscanned artifacts.

Spot: Caret ranges everywhere; no advisory scanning.

Fix: Pin or lock versions; enable Dependabot/Snyk; verify hashes; use npm/yarn/Composer audits.

76. Inefficient Database Indexing

What: Slow queries due to missing/incorrect indexes.

Spot: Full table scans in slow query logs; composite indexes absent.

Fix: Add proper indexes and cover common WHERE/ORDER BY; verify with EXPLAIN and Laravel Scout/Scout Engines as

needed.

77. No Transaction Boundaries

What: Multi-step writes without transactions cause partial state.

Spot: Inconsistent data after errors/crashes.

Fix: Wrap critical sequences in DB::transaction(); prefer outbox/queued patterns for side effects.

78. Inadequate Internationalization (i18n)

What: Hard‑coded strings and formats hinder localization.

Spot: Strings, dates, and currency literals in views/controllers.

Fix: Move strings to lang files; use Carbon locales/Intl; format currency via Money VO.

79. Improper Timezone & Clock Assumptions

What: Mixing server local time with UTC; daylight saving bugs.

Spot: Inconsistent timestamps; cron vs. user display mismatch.

Fix: Store UTC in DB; convert per-user locale; test DST with Carbon and queues.

80. Debug Mode / Verbose Errors in Production

What: Sensitive stack traces leaked to users.

Spot: APP_DEBUG=true in production; verbose error pages.

Fix: Ensure APP_ENV=production, APP_DEBUG=false; provide friendly error pages and Sentry-style reporting.

References (specs & docs)

• Laravel 12.x Docs — Releases, Blade, CSRF, Eloquent, Starter Kits, Frontend (Vite): https://laravel.com/docs/12.x/ (see

specific pages)

• PHP 8.4 — Release announcement & changelog: https://www.php.net/releases/8.4/en.php and

https://www.php.net/ChangeLog-8.php

• HTML Living Standard (WHATWG): https://html.spec.whatwg.org/

• ECMAScript 2025 (ECMA‑262 16th edition): https://ecma-international.org/wp-content/uploads/ECMA-

262_16th_edition_june_2025.pdf

• Vite build tool: https://vite.dev/

• WCAG 2.2 (W3C): https://www.w3.org/TR/WCAG22/

• OWASP Top 10 (2021 edition): https://owasp.org/www-project-top-ten/ / https://owasp.org/Top10/

• PurgeCSS: https://purgecss.com/

