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PREFACE

This textbook is intended for students who have already studied basic
mathematics and need to study the methods of higher mathematics. It covers
three content areas: Linear Algebra, Vector Algebraand Analytical Geometry.
Each part contains basic mathematical conceptions and explains new
mathematical terms. Many useful examples and exercises are presented in the
textbook. explained and illustrated by examples and exercises.

The Linear Algebra topics include matrix operations, determinants and systems
of linear equations.

In the section “Vector Algebra”, a main attention is paid to the geometrical
applications of vector operations. The vector approach is considered to be basic
for discussion of classic problems of Analytical Geometry.

The author welcomes reader’s suggestions for improvement of future editions of
this textbook.
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Matrices

LINEAR ALGEBRA

1. Matrices

Matrices allow us to operate with arrays consisting of many numbers,
functions or mathematical statements, just as if we operate with several
items.

Matrices have a wide application in different branches of knowledge, for
instance, in mathematics, physics, computer science, and so on. Matrices
allow us to solve systems of ordinary equations or sets of differential
equations, to predict the values of physical quantities in quantum theory, to
encrypt messages in the Internet, and so on.

In this chapter, we discuss the basic concepts of the matrix theory,
introduce matrix characteristics, and study some matrix applications. The
Important propositions are proved and illustrated by examples.

1.1. Basic Definitions

A matrix is a rectangular array of numbers, algebraic symbols or
mathematical functions, provided that such arrays are added and
multiplied according to certain rules.

Matrices are denoted by upper case letters: A, B, C, ...

The size of a matrix is given by the number of rows and the number of
columns. A matrix with m rows and n columns is called an mxn matrix
(pronounce m-by-n matrix). The numbers m and n are the dimensions of the
matrix. Two matrices have the same size, if their dimensions are equal.

Examples:
3x2 matrix 2 x 3 matrix 2 x2 matrix
2 -7 )
-1 50 SINX —COSX
A=[1 O B= C= .
3 3 8 COSX SIinXx
3 4

Members of a matrix are called its matrix elements or entries. The entry
in the i-th row and the j-th column of a matrix A is denoted by a; ; or A ;.

The subscripts indicate the row first and the column second.
In the examples above, the boldface elements are a;, =4 and b, , =5.

A matrix with one row is called a row matrix: (al,1 a, ... alyn).

7



Matrices

a1
. . | Q21
A matrix with one column is called a column matrix:
am,l
In the general form, a matrix is written as follows:
a1 A ay a n
1 Ay a an
A=
i1 Qi j Qin
Ani Gm2 am,j  @qn

A short form of this equality is A=||a; ; |-

A square matrix has as many rows as columns, the number of which
determines the order of the matrix, that is, an nxn matrix is the matrix of
the n -th order.

1.2. Matrix Operations

Equality of Matrices
Two matrices, A=[|a; ;|| and B=[b; ;||, are equal, if they have the same

sizes and their elements are equal by pairs, that is,

for each pair of indexes {i, j}.

Scalar Multiplication
Any matrix A may be multiplied on the right or left by a scalar quantity A.
The product is the matrix B =41 A (of the same size as A) such that
bi,j = lai’j
for each {i, j}.

To multiply a matrix by a scalar, multiply every
matrix element by that scalar.

20 -5

2 -3 0 10 -15 O
Example: Let A= . Then 5A= :
1 4 1 5

8
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The Sum of Matrices
If A=|la; ;|| and B=||b; ;|| are matrices of the same size, then the sum,

A+ B, is the matrix C =||¢; . || such that
Ci,j :ai,j +bi,j

il

for each pair {i, j}.

To add matrices, add the corresponding matrix elements.

3 71 6 -15 3
Example: Let A= and B = . Then
-1 2 0 4 1 2

3 71 6 -15 3 9 -8 4
A+ B = + = .
-1 2 0) \4 1 2 3 3 2
Multiplication of a Row by a Column
Let A be a row matrix having as many elements as a column matrix B .

In order to multiply A by B, it is necessary to multiply the corresponding
elements of the matrices and to add up the products. Symbolically,

b,
b, , 4
AB = (al,l dp - al,n) =ay b, +a 0+ +a b, = Zal,kbk,l
k=1
bn,l

Thus, multiplying a row matrix by a column matrix we obtain a number.
Later we will show that any number can be considered as an 1x1 matrix.

a,, a,, .. a
To multiply a two-row matrix A= Al): thoe Y"1 by the
A, 1 @p - Gy
by

column matrix B=(B,;)=| : |, we multiply each row of A by the column
bn,l
of B. In this case, the product AB is the following 2 x1 matrix:

AB — (Al](B )= [A&Bl]: ( a by, +ag .0, +. 3 by ]
A, ' A,B, a4y, +3,5,0,, +...+8, Dy

Similarly, the multiplication of an m-row matrix by an n-column matrix
generates the mxn matrix.
9
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Matrix Multiplication

The product of two matrices, A and B, is defined, if and only if the number
of elements in a row of A equals the number of ones in a column of B.

Let A be an m x| matrix and B be an | xn matrix. Then the product AB is
the m xn matrix such that its entry in the i-th row and the j-th column is
equal to the product of the i-th row of A and the j-th column of B. If we
denote the rows of Aby A, A, ... and the columns of B by B;, B,, ..., then

A AB, AB, - AB,
(B B, .. B)o|MB AB - AB,

A, AB, AB, - AB

To find the element ¢; ; in the i-th row and the j-th column of the
matrix C = AB, multiply the i-th row of A by the j-th column of B:

|
Cij = AB; :kz_;ai,kbk,j :

Note 1: The symbolic notation A? means the product of two equal square

matrices: A2 = A-A.
Similarly, A =A-A-A,
A"=A-A-...-A.
%/_J

n
Note 2: In general, the product of matrices is not commutative: AB = BA.

Examples:
1) For each of the following matrices,

B:[i 2) C:[ij, D=(2 0), and F:[lfl 211}

2 1
determine whether it equals the matrix AZ(O 3] or not.

Solution: The dimensions of both matrices, C and D, differ from ones
of A. Therefore, A=C and A=D.

There are two matrices, B and F, which consist of the same elements as
A and have the same order. However, the corresponding entries of A and
B are not equal in pairs, and so A=B.

The matrix F satisfies all conditions of matrix equality, that is, A = F,

10
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1 3 4 10
2) Let A= and B= :
2 -4 5 15

Solve for X the matrix equation
X+4A=B.

Solution:
X=B—4A=(4 10}_4(1 SJ
5 15 2 -4
4 10\ (-4 -12 0 -2
:[5 15}{—8 16)2(—3 31}
5
3) Given two matrices A=(1 2 3) and B=|-4/|, find the matrix
0
products AB and BA.
Solution:
3)
AB=(1 2 3)|-4|=15+2-(-4)+3-0=-3,
0
5 51 5.2 5.3 5 10 15
BA=|-4|-1 2 3)=|-41 -4.2 -4.3|=|-4 -8 -12]|.
0 01 0-2 03 0O 0 ©

2 1 3 5
4) Let A:(O 3} and B:(4 1]. Find the difference between

matrix products AB and BA.
Solution:

a2 D)(3 5)_(23+1:4 2:5+1:(-1))_(10 9
“lo 3/l4 -1) (0-3+3-4 0-5+3-(-1)) |12 -3)°

an (3 5)(2 1)_( 32+5:0 31+53 ) (6 18
la -1)lo 3) (4.24(-D)-0 41+(-D-3) (8 1)

10 9) (6 18) (4 -9
AB—BA= - - |
(12 —3j [8 1) [4 —4}

11
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11
5) Find A? | if A:(O j

1
Solution:

AZ—AA—ll
B o 1

A3:A-A2:(1 1)

o 36 )
BRE
N

A2 _ 1 2002
o 1 )

0 1)

1.3. Types of Matrices
In a square matrix A=||q ; ||, the elements &;;, with i =1, 2,3, ..., are
called the diagonal matrix elements. The set of the entries a;; forms the

leading (or principle) diagonal of the matrix.
A square matrix A=||a; ;|| is called a diagonal matrix, if off-diagonal

elements are equal to zero or, symbolically, a; ;=0 forall i= j:

il

a, 0 - 0
0 a 0
A= . .
0 0 ... a

n,n

Identity matrices | are square matrices such that
|-A=A and A-1=A.
Compare these matrix equalities with the corresponding property of real
numbers: l-a=a and a-l=a.
Theorem: Any identity matrix | is a diagonal matrix whose diagonal
elements are equal to unity:
0
0
| = |
0O 0 -1
This theorem is proved in the following section.
12
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Examples:
1) Itis not difficult to verify that

1 0\(a b a b a by(1 0 a b
- = and : = :
0 1){c d c d c d)(0 1 c d
1 0). N :
Therefore, (O 1) Is the identity matrix of the second order.

2) Let A=[|a, ;|| beany 2x3 matrix. Then

il
1 0)(a; &, &3 A Qp A3

. = and
0 1)\a; a,, a3 Ayp Qyp Qg

1 0
i G2 A3 0 0l 1 & A3
dyq dyy Ayg 0 1 dyq; Ay dyg

o +— O

A matrix is called a zero-matrix (0-matrix), if it consists of only zero
elements: & ; =0 for each {i, j}.

In a short form, a zero-matrix is written as O:

0 --- 0
O=|: . :
0 --- 0
By the definition of a zero-matrix,
0-A=A-0=0
and
A+0=A,

that is, a zero-matrix has just the same properties as the number zero.

However, if the product of two matrices is equal to zero, it does not mean
that at least one of the matrices is a zero-matrix.

) i 0 1 3 2
For instance, both matrices, A:(O 4) and B:(O Oj’ are non-zero

matrices, while their product is a zero-matrix:

oo o o o)

13
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A square matrix has a triangular form, if all its elements above or below
the leading diagonal are zeros:

all a,;=0 for i>j or for i<j.

Examples:

Upper-triangular matrix | Lower-triangular matrix

2 a b5 1 00
A=10 b c B=| 4 7 0
0 0 4 -2 0 3

Given an mxn matrix A=||a; ; ||, the transpose of A is the nxm matrix
AT =[|a;,; || obtained from A by interchanging its rows and columns.

This means that the rows of the matrix A are the columns of the matrix AT :
and vise versa:

(AT)i,j =aj;-
2 -7
: T 2 1 3
For instance, the transpose of A=|1 0 | is A = 20 a)
3 4

A square matrix A=[|a; ; || is called a symmetric matrix, if A is equal to the

transpose of A: A=A & aj=a;;.
The examples below illustrate the structure of symmetric matrices:
a d e
a c
R:( j:RT and S=|d b f|=S".
c b
e f ¢

A square matrix A=[|a; ; || is called a skew-symmetric matrix, if A is equal
to the opposite of its transpose:

ai’j = —aj’i .
The example below shows the structure of a skew-symmetric matrix:

0 -3 1
A= 3 0 -2|=-AT.
-1 2 0

14
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1.4. Kronecker Delta Symbol
The Kronecker delta symbol is defined by the formula

L if =,
§i': . . .
Joo, if iz

The delta symbol cancels summation over one of the indexes in such

expressions as
2a0 230,
i

1
Zai,jé‘i,j ] Zai,jé‘i,j , and so on.
: ]
For instance, the sum ) a6;; may contain only one nonzero term
i

a;0;; =4a;, while all the other terms are equal to zero, because of ¢; ; =0

forany i = j.

n
If k<j<n, then > a5 =a;.
i=k

i=k

n
Likewise, if k<i<n, then Y a;5;,=a
j=k

n
Otherwise, if i <k ori>n, then a5 ; =0.
j=k

Examples:
100

>i%6,;=1*-0+2%-0+3"-1+4-0+...=9.
i=1
20I 5
2450 =2 =1024, however > 2“5,,,=0.

k=1 k=1

Now we can easily prove the above-mentioned theorem of identity
matrix:

0
=185 |

15



Matrices
The theorem states that the | =||¢; ;|| is an identity matrix. Therefore, we

have to prove that A-1 = A for any matrix A.
Proof: Let A be an arbitrary mxn matrix and ||5; ; || be the square matrix

of the n-th order. Then the matrix product A-1 is the matrix of the same
sizeas A.

By the definition of the matrix product and in view of the properties of the
delta symbol, we obtain that

n
(A1) ;= zai,k5k,j =&
k=1

for each pair of indexes {i, j}.
The equality of the corresponding matrix elements implies the equality of
the matrices: A-1 =A.

1.5. Properties of Matrix Operations
Properties involving Addition
1. For any matrix A there exists the opposite matrix (—A) such that
A+(-A)=A-A=0.
2. If A and B are matrices of the same size, then
A+B=B+A.
3. If A, B, and C are matrices of the same size, then
(A+B)+C=A+(B+C).
4. The transpose of the matrix sum is the sum of the transpose of the
matrices:
(A+B)T =AT +BT.
The above properties of matrices result from the properties of real numbers.
The proofs are left to the reader.
Properties involving Multiplication

1. Let A be amatrix. If A and g are scalar quantities, then
A(uA) = (A u)A.

2. Let A and B be two matrices such that the product AB is defined. If

A is a scalar quantity, then
A(AB)=(A1A)B=A(1B).

3. Let A, B, and C Dbe three matrices such that all necessary
multiplications are appropriate. Then
(AB)C = A(BC).
16
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4. Let A and B be two matrices such that the product AB is defined.

Then
(AB)T =BTAT .
5. If A and B are two diagonal matrices of the same order, then
AB =BA.

Properties 1) and 2) simply result from the properties of real numbers and
the definition of the scalar multiplication.

To prove Property 3, we have to show that the corresponding elements of
the two matrices, (AB)C and A(BC), are equal.

By the definition, the matrix element in the i-th row and the k-th column of
the matrix AB is

(AB)iy =D ai by
|

The matrix element in the i-th row and the j-th column of the matrix
(AB)C can be expressed as

((AB)C); ; =D (AB); kCy.i =D > ai by Cy -
k Ko
By changing the order of summation, we obtain
((AB)C); ; = Zzai,lbl,kck,j = Zai,lzbl,kck,j
Ik | k

= Zai,l (BC), ; =(A(BC)); ;-
|

The equality of the corresponding matrix elements is satisfied that implies
the equality of the matrices: (AB)C = A(BC).

To demonstrate Property 4, we transform the entry in the i-th row and the
j-th column of the matrix (AB)" . In view of the definition of the transpose
of matrix,

(AB)"i; =(AB);; :Zaj,kbk,i
k
:;ATk,jBTi,k :;BTi,kATk,j :(BTAT)LJ-.

Thus, (AB)" and (BT AT) obey the conditions of equality of matrices.

Property 5 is based on the following reasons: 1) diagonal matrices are
symmetric ones; 2) the product of diagonal matrices is a diagonal matrix.
Therefore, we need only to show that (AB);; = (BA); ;. Indeed,

(AB);, :Zai,kbk,i :Zak,ibi,k :Zbi,kak,i = (BA); ;.
k ik K

17
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Properties involving Addition and Multiplication

1. Let A, B, and C be three matrices such that the corresponding
products and sums are defined. Then

A(B+C)=AB+AC,
(A+B)C=AC+BC.

2. Let A and B be two matrices of the same size. If A is a scalar, then
A(A+B)=4AA+AB.

To prove Property 1, consider the element on the i-th row and the j-th
column of the matrix A(B +C).

By the definition of the matrix product and in view of the addition
properties, we have

(A(B+C)); ; :Zai,k(B+C)k,j :Zai,k(bk,j +Cy ;)
K K

k k

for each pair of indexes {i, j}.

Therefore, the matrices A(B + C) and (AB + AC) are equal.
The equality of the matrices (A + B)C and (AC + BC) can be proven in a
similar way:
((A+B)C); ;= Z(A+ B)ikCy ;= Z(ai,k +b; )¢
k k

k k

The corresponding matrix elements are equal by pairs. Hence, the matrices
are equal.

Property 2 results from the properties of real numbers. The proof can be
performed by the reader.

Short Summary: Operations with matrices, such as addition and
multiplication, have similar properties as that with usual real numbers.
Numerical matrices of the first order can be interpreted as usual real
numbers, that is, ||a,, [[=a,,. The set of matrices is a generalization of the

set of real numbers.

18
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Examples:
3 -1 -2 4 1
1) Let A=(1 2),B= ,and C= .
0 4 5 0 2
By a straightforward procedure, show that (AB)C = A(BC).
: 3 -1
Solution: A-B=(1 )[0 4j:(3 7),

-2 41
(A-B)C=(3 7)-[5 0 >

3 - -2 4 1 -11 12 1
B'C: . = ,
0 4 5 0 2 20 0 8

A(B-C)=(1 ).(_11 L2 1j:(zg 12 17)=(A-B)C.

j: (29 12 17),

20 0 8
2) Let A=[la; ;[ and B =||b; ;|| be two matrices of the second order.

Verify the identity (AB)" =BT A'.
Solution: Find the matrix product of A and B and the transpose of AB:

AB— (al,l a j . (bu b12j B [al,lbl,l +a,0,,  a4b, a0, )

A, Ay, ) (b by, Ay,0 0 +ay 50,0 Ay, +a,,b,,
a by +ag,h,, Ay, +a,,b,,
a b, +ag,h,, Ay, +a,,5b,,

Then find the matrix product BT AT to see that (AB)" =BT A" :
BTAT — (bll bz,lj . [al,l az,ll B (bl,lal,l +by,a;, bjay;+by,a,, j

b, by, b ,a; +0,,8, b,a;,+b,5a,,

(A-B)' =[

d, adyy

1
3) Let f(x)=2x-x?+1and A:(O 2). Find f (A).

Solution: The matrix-analogue of the number 1 is the identity matrix I.
Therefore,

f(A)=2A—A2+|=2((1) ‘Zj_(é ‘ZM; _2}[(1) ‘3
:(2 _42}((1) _43]+(é (3:(3 ﬂ

19




Determinants

2. DETERMINANTS

2.1. Permutations and Transpositions

A permutation of elements of a set of ordered elements is any one-to-one
transformation of the set onto itself.

Let S be the ordered set of the natural numbers from 1 to n:
S={1,2,3,...,n}.
A permutation of S is the set of the same numbers arranged in a particular
way:
{1,2,3,....n} = {ij, iy, li3,...,1,}.

A permutation is called a transposition, if the order of two elements of the
set is changed but all other elements remain fixed.

Example of a permutation:
{1,2,34 = {2,413}

Example of a transposition:
{,2,3,4 = {4,2,31}

Every permutation of ordered elements can be expressed through a
sequence of several transpositions. For instance, permutation {2, 4,1, 3} can

be presented by the sequence of the following transpositions:
{1,2,34y = {3,214} = {2,314 = {2,413}

It is said that a permutation of S contains the inversion of elements i; and
iy, If

j<k and i;>i.
The total number of inversions determines the inversion parity of the
permutation that takes on two values: either even or odd.
A permutation is called an even permutation, if it contains an even number
of inversions. This means that an even permutation is formed by an even
number of transpositions of S.
An odd permutation contains an odd number of inversions.
This means that an odd permutation is a sequence of an odd number of
transpositions of S.

Example: The permutation {2, 4, 1, 3} of {1, 2, 3,4} is odd, since it

contains three inversions:
2andl, 4andl, 4 andS3.

20
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Theorem 1
Any transposition changes the inversion parity of a permutation.

Proof: It is not difficult to see that the transposition of neighboring
elements i; and i;,; changes the inversion parity of a given permutation.

The transposition of elements i; and i;,, can be expressed as the sequence
of (2k —1) transpositions. Really, by k transpositions of the element i; with
the neighboring element on the right of i; we get the permutation
£ iy,
k transpositions
{Ij/:ﬁ\k\}

\_V_J
k clements

Then, by k - 1 transpositions of the element i;,, with the neighboring
element on the left of i we get the desired permutation

CEE FORTR PR &

j+k

k-1 transpositions

£\
{”"/K’ SO RS i;:"'}

k-1 elements

The total number k + (k —1) = 2k —1 of the transpositions is an odd number,
and hence the inversion parity of the permutation is changed.

Theorem 2
Giventheset S={L, 2,3, ..., n}, there are n! different permutations of S.

Proof: Consider an arbitrary permutation of S.
The first position can be displaced by any of n elements.
The second position can be displaced by any of the remaining n-1
elements.
The third position can be displaced by any of the remaining n-2
elements, and so on.
The n-th position can be displaced by the rest single element.
Therefore, there are n(n — 1)(n — 2)...1 = n! ways to get a new permutation
of the elements of S.
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Example:

The set S={1, 2,3} consists of three elements, and so the number of
different permutations is 3!=6:

{1,2,3}, {2,313}, {31 2},

{321}, {2,1,3}, {1,3 2}.
a) The permutations

{1,2,3}, {2,3,1} and {3,1, 2}

are even, since each of them is a sequence of an even number of
transpositions of the elements of S:

{1,2,3y > {321}y —-> {231},
{,2,3y —»> {2,1,3} —> {3172}

In terms of inversions, the permutations {1,2,3}, {2,3,1} and
{3,1, 2} are even, since each of them contains an even number of
inversions of the elements. For instance, the permutation {2, 3,1}
contains two inversions of the elements:

2 and 1, since 2 is on the left from 1,and 2 > 1,

3 and 1, since 3 is on the left from 1, and 3 > 1.

b) Likewise, the permutations
{3,2,1}, {2,1,3} and {L,3 2}

are odd, since each of them is a sequence of an odd number of
transpositions of the elements of S. In particular, the permutation
{3, 2,1} is the transposition of the elements 1 and 3 of S.

In terms of inversions, the permutation {3,2,1} is odd, since it

contains the odd number of the inversions:
3 and 2, since 3 ison the left from 2 and 3> 2,
3 and 1, since 3 ison the left from 1 and 3>1,
2 and 1,since 2 ison the left from 1 and 2> 1.

The permutation {2,1, 3} contains the inversion of the elements 2
and 1.

The permutation {1, 3,2} contains the inversion of the elements 3
and 2.

22



Determinants
2.2. General Definition
Let A=[|a; ;|| be asquare matrix of the order n, and let S ={L,2,---,n} be
the ordered set of the first n natural numbers.
Consider the following product of n matrix elements:
a1, 82k, - Bnk, (—1) Plale -kl (1)

where {k;,k,,---,k,} is a permutation of S, and P{k;, k,,---,k,} is the
inversion parity of the permutation {k, k,,---, k,}. That is, (-1)P =1 for an
even permutation, and (—1)° =—1 for an odd one:

(~1)Plkerk —signdky, Ky, ..., K. }.

Expression (1) is the product of matrix elements such that each row and
each column of A is presented by one and only one its element. According
to Theorem 2, there are n! different permutations of S, each of which
generates the product of type (1).

The sum of products (1) over all possible permutations {k;, k,,---, k,} is

called the determinant of the matrix A:

PLKy Kp ek
detA= Y a, ay, ...a,, (-)Tieiat )
{ki.ko ... Kn }

It is denoted by the array between vertical bars:

A Ay o
dyqp Ay, 0 A

detA=| & (3)
an,l a'n,2 an,n

Sum (2) contains n! terms (1) with even and odd permutations, fifty-fifty.

The determinant is very important characteristic of the matrix. As a rule, it
Is important only whether the determinant of a given matrix equals zero or
not. For instance, the inverse matrix of A exists if and only if det A=0.

Do not confuse the determinant of a matrix with the matrix itself!

While a numerical matrix A is an array of numbers, det A is some single
number but not an array of numbers.
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Particular cases

1. A matrix of the first order contains only one element. The determinant
of that matrix is equal to the matrix element itself: det||a,, |~ a,;.

. _ i1 a2
2. Let A be a square matrix of the second order: A= :
dy1 82

There exist the following two permutations of {1, 2}: {1, 2} and {2, 1}.
The permutation {1, 2} is even, since it does not contain any inversions,
while the permutation {2, 1} is odd, since two elements form the inversion.

These permutations generate two products of the elements with opposite
signs,
+ay7d,, and —a;,a,,

the sum of which gives the determinant of A:

3. If a matrix has the third order then we have to consider all possible
permutations of the set {1,2,3}. There exist the following six

permutations of {1, 2, 3}:
{,2,3}, {2,31}, {312},
32,1}, {213}, {132}

The permutations {l, 2,3}, {2,3,1}, and {3,1, 2} are even since each of

them contains an even number of inversions of elements.
The permutations {3,2,1}, {2,1, 3}, and {1, 3,2} are odd since there are

odd numbers of inversions of elements in these permutations. (See details
in the above example.)
Therefore,

A Qp A3
Ay 8o Ap3|=8118),833181,8y3831 181387183,
dzq d3p dz3

— Q38,831 — a1 ,8,1833 81185383

To remember this formula, apply the Sarrus Rule which is shown in the
figure below.
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+a 18 5833 — 3033183
+ al,z a2,3 afi,l - ﬂl,z aZ,l a3 ’3

T 383,45, — 135303 5

The elements on a diagonal or at the vertices of a triangular form the
product of three elements. If the base of the triangle is parallel to the

leading diagonal of the matrix, the product keeps the sign; otherwise, the
product changes the sign.

2.3. Properties of Determinants

1. The determinant of the transpose of A is equal to the determinant of
the given matrix A:

det AT =det A.
Proof: This property results from the determinant definition since both
determinants consist of the same terms.

2. Multiplying any row or column of a determinant by a number A,
multiplies the determinant by that number:

a1 P L P Ay Ay Ayt Gy,

41 &1 a; ; %o d;; 4y a; ; &35
—A-

A-a, A-ay, Aray A-a, a, @y a a;,

A ) T dy; T Ly Ay Dy Tt Gyt gy

This means that the common factor of a row (column) can be taken
out.

Proof: Every term of the sum
_ P{iy,ip,....in}
detA= D ay;ay; ...a,; (-1 2h
{i1,in,...in}
contains one and only one element of a row and a column of the matrix.

Therefore, if the row (or column) is multiplied by a number, each term is
multiplied by that common factor.
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3. The determinant changes the sign, if two rows (or columns) of a
matrix are interchanged:

d, 4y Az oty Ay Gy @z 7 Oy

Ay Gy pz - Oy a;y o &z o Ay

Proof: By Theorem 1, any transposition changes the inversion parity of a
given permutation. Therefore, each term of the sum
P{ig,ip,....i
detA= > aj;ay; ...a,; (-1) Ui dzdnd
{i1,in,...in}
changes its sign.

4. If a matrix has a zero-row or zero-column, then the determinant is
equal to zero:

A1 Qo Q3 G,
0 0 0O .- 01|=0
aj,]_ aj,2 ajlg aj,n

Proof: Every product of the sum
P{it,io,....in} _
Zalyilazyiz .o .an,in (_1) {Il I2 I } —_— det A
{it,ip,...in}
contains a zero factor and so equals zero.

5. If a matrix has two equal rows (or columns) then the determinant is
equal to zero:

di1 djp &3 - jp

di; Qi &3 - jp
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Proof: Let two identical rows (or columns) be interchanged. Then, by
Property 3, the determinant changes the sign. On the other hand, the rows
(or columns) are equal, and hence the determinant keeps its value:

detA=—-detA = detA=0.

6. If two rows (or columns) of a matrix are proportional to each other
then the determinant is equal to zero:

A1 Qo Qi3 v g

Caj; Caj, Caj3 -+ Caqj,

Proof: Multiplying the i-th row of the matrix by the constant of
proportionality we obtain the determinant with equal rows.

7. If each element of a row (column) of a determinant is the sum of
two entries then

4 ) 4 3 T i
Gitbyy @Gotby @athos @ b=
a?’l,l 4.2 an,B &y
dyp gz Bz T Ay d Gz Az o By
Ay Go sz @l + (B b, B3 - b,
) “n,z an,B an,n ;1 an,Z an,B an,n

Proof:
Z:al,i1 = '(ak,ik + bk,ik )"'an,in (_1)P{I1,|2,...,|n} _

{i,in,..nin}
= D Dby

{iip,...in} {igip,...in}
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8. A determinant holds its value, if a row (column) is multiplied by a
number and then is added to another one:

&1 dp Q3 o Yy aj 8y &in

A Ao 3 o Qyy Qg +Cay;  , tCa - o G HCQ,

Proof: The determinant on the right hand can be expressed as the sum of
two determinants, one of which contains two proportional rows.
Therefore, the determinant equals zero.

9. Let A and B be square matrices of the same order. Then the
determinant of their product is equal to the product of the
determinants:

det(AB) =det A-detB.

10. The determinant of a triangular matrix is equal to the product of the
elements on the principle diagonal:

a1 Qo H3z 0 Qg
0 a,, a3 - a,
O 0 a.3’3 ag’n =a1’1-a2,2 'a3’3‘...‘an'n.
0 0 0 - a,,

In particular, the determinant of an identity matrix | equals the unity.

Proof: First, there is only a;; which is a non-zero element in the first
column Therefore, sum (2) consists of zero terms for all values of i,

except for i, =1,

Next, we have to ignore the first row and choose a non-zero element on
the second column. Only the element a, , satisfies these conditions, and

So we can set i, =2 in sum (2).
Likewise, on the third column we can take only the element a;; to get a

non-zero product of elements and so on.
Therefore, all appropriate permutations of indexes give zero products of
elements, except for the product of the elements on the principle diagonal.
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Examples:
sinX  COoSX .
1) Let A:( . j Find det A.
—COSX SinX
Solution:
sinx cosx| ., )
det A= ] =sin“ X +co0s” x =1.
—COSX SinX

a b
2) LetAz(C dj.Verifythat det A=det A”.

Solution:
a b a ¢
det A= —ad-bc and detA’ = —ad —bc.
c d b d
1 2 3
3) Evaluate [4 5 6].
7 8 9
Solution:
1 2 3| L-ohL-2rn |1 2 3 1 2 3
I;->r;-3n
4 5 6 = 2 1 0|=2|2 1 0|=0
7 8 9 4 2 0 2 10
50 7 1 )
4) Let A= and B = . Verify that det AB = det A-det B.
1 2 3 2
Solution:
50 7 1
det A= =10, detB= =11,
1 2 3 2
det A-detB =110.
5 0\ (7 1 35 5
AB = . — ,
1 2/\3 2 13 5
35 5 35
det AB = =5. =5(35-13) =110.
13 13
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31
5) Evaluate det A1 if A:(2 J.

Solution: Note that
det A% = (det A)1%,

Then
3
detA:‘z j=3—2:1 —  det AL000 _ 11000 _q
2 3 4
6) Let A=|0 1 5
0 0 -1

Calculate: (a) detA, (b) detA®, (c) det(2A), (d) det(—-3A),
(e) det(A-21).

Solution: (a) The determinant of a matrix in the triangular form equals
the product of the principle diagonal elements. Therefore,

2 3 4
detA=/0 1 5 |=2.1-(-1)=-2.
00 -1

(b) The determinant of the product of matrices is equal to the product of
their determinants, and so

det A° = (det A)® = (-2)° = -8.
(c) Let I be the identity matrix of the third order. Then
det(2A) = det(21)-det A=23(-2) =-16.
(d) Likewise,
det(—3A) = det(-31) -det A= (-3)%(-2) =54.
(e) Simplify the matrix (A-21):
2 3 4 2 0 0y (O 3 4
A-21=|0 1 5|-|0 2 0|=|0 -1 5
o0 -110 0 2) {0 0 -3

The determinant of this matrix equals zero: det(A-21)=0.
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2.4. Calculation of Determinants

Methods of determinant calculation are based on the properties of
determinants. Here we consider two methods which being combined
together result in the most efficient computing technique.

2.4.1. Expanding a determinant by a row or column

Before formulating the theorem, let us introduce a few definitions.
Let A be a square matrix of the order n. By removing the i-th row and j-th
column, we obtain a submatrix of A, having the order (n—1). The

determinant of that submatrix is called the minor of the element g, ;, which
is denoted by M; ;.

1j’

a 1, ; 4
M, , =7 t— S
nﬁz,l 7 ”Pﬂ,?ﬂ

The cofactor of the element a; ; is defined as the minor M; ; with the sign
(-1)'*1. It is denoted by the symbol A ;:
A j =(-1)'" M ;-

The following theorem gives a systematic procedure of determinant
calculation.

The determinant of a matrix A equals the sum of the products
of elements of any row of A and the corresponding cofactors:

detA=2a; 1 Ag+ai, Ap+...+an A,

n
=D 2 A
j=1

The above theorem is known as the expansion of the determinant according
to its i-th row.

Proof: By the definition, det A is the algebraic sum of the products
gy, 8y, -8, taken with the signs
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SigN{l, gy by} = (D)7 o)
over all possible permutations {k;,K,,..., K.}, that is,
det A= Zal,klaz,kz -8k, (~pPtaterkad
ki ko . Ko}
Each product @,y @, ...d,_ contains the element a ; on the i-th row

and j-th column. Therefore, by regrouping the terms, the above sum can be
expressed as the linear combination of the elements &, ; (j=12,---,n):

detA=a, A, +a , A, +...+a, A,.
Here

A= ZalklaZK A1k, Rittk,, - Ank,
{ky, o Kica ki =1 Kjgq, o Kn 3

Slgn{kli " | -1 J’k|+1’ "’kn}'
By the theorem of inversion parity of a permutation,

Slgn{kli LAY 1’J1k|+11 o n} ( 1)| 1S|gn{J kli " | ~17 |+1’ k }
There are (j—1) inversions ij in the permutation {j,K,,- - n} and so
signdj, k.-, Kig Kisy, oo Ko b = (1) signgky, -+, Ki_y, Kisrs o Ko b,
Slgn{kl’ " | ~11 J’k|+11 } ( 1)I+JS|gn{k1’ " | —11 |+1’ ) }

However, Z"'ai—l,ki_l 41k, sign{--- ki, Ky, k= Mi,j
{ky o ki Kisa ko
is the minor of the element @, ;.

Therefore, A ; = (™! M; j is the cofactor of the element & ;.

Since both matrices, A and the transpose of A, have equal determinants, the
theorem can be formulated in terms of expanding a determinant by a
column:

The determinant of a matrix A equals the sum of the products of
elements of any column of A and the corresponding cofactors:

detA=a1,j Al,] +a2’j A2,j +...+an’j An,j
n
=23 A
i=1

Due to the theorem, a given determinant of the order n is reduced to n
determinants of the order (n -1).
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Examples:
1) Expand the determinant of the matrix A=||a; || of the order 3 by

(i) the first row; (ii) the second column. Compare the results.
Solution:

i dp Qg3
det A— . |82 @y dp; Ay Ay Ap
ELA=|ay ayp ady|=ad; —ap 13
dzy dAgs dzy QAg dz; Qdg
dgy Az dg;

= a1 (App833 — ApsBgy) — Ay (Ay 833 — Axsdsy) + Ay3(@p1837 — sy )
= Qq189p833 + A1p8p3837 + 1385183, —891893A3; — A1p8p1833 — 8138783,

dj; dp  agg
det A— B Ay 8y a1 Q3 d; Q43
ELA=|ay Adyp Ady|=—dp 22 —dz)
dz;  Ags Az dg; Ay Ay
dz; dzp Ag

= —ay, (81,833 — Apadsy) +Apy (811833 — Ay3831) — A3, (813893 — A58 )
= Qq189p833 + 81983837 + A138,183y —8q189383; — A1p8p1833 — 138,83

Both results are identically equal.

2 -5 3
2) Calculate the determinant |1 4 0|, by its expansion
-3 7 5

according to the first row and the second column.
Solution: The expansion by the first row yields

2 -5 3
4 0 1 0 |1 4
1 4 0|=2 —(-5) +3
75 -3 5 |-3 7
-3 7 5

=2-4.5+5-1-5+3(7+12) =122,

Now expand the determinant according to the second column:

2 -5 3
1 0 2 3| |2 3
1 4 0|=—(-5) +4 -7
-3 5/ -3 5 |1 0
-3 7 5

=5(5+0)+4(10+9)-7(0-3) =122.
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2. Evaluation of determinants by elementary operations on matrices
By means of elementary row and column operations, a matrix can be
reduced to the triangular form, the determinant of which is equal to the
product of the diagonal elements.

Let us define the elementary operations.

In view of the properties of determinants, any techniques which are
developed for rows may be also applied to columns.

In order to calculate a determinant one may:
1. Interchange two rows.
As a result, the determinant changes its sign.

2. Multiply a row by a nonzero number.
As a consequence of this operation, the determinant is multiplied by
that number.

3. Add a row multiplied by a number to another row.
By this operation, the determinant holds its value.

We can also use the elementary operations to get some row or column
consisting of zero elements except for one element, and then to expand the
determinant by that row (or column).

Examples:
2 -4 1
1) Let A=|-3 2 5.
1 2 3

By elementary row and column operations on the matrix, reduce the
matrix to the triangular form and calculate det A.

Solution:
r1—>rl—2r3

2 -4 1 roi+3r [0 -8 =5

detA=|-3 2 5 = 0O 8 14

1 2 3 1 2 3
r<r 1 2 3| r—or+r 1 2 3

13 373 2

= -0 8 14 = -0 8 14|
0 -8 -5 0O 0 9

The determinant of the matrix in the triangular form is equal to the
product of the elements on the principle diagonal. Therefore,

detA=-1.8-9=-72.
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2) Evaluate the determinant of the matrix

15 -2 0
31 6 -1
170 1 3
45 2 1

Solution: First, transform the first row via elementary column
operations.

Keeping the first and last columns, subtract the first column multiplied
by 5 from the second one, and add the first column multiplied by 2 to
the third one:

1 5 -2 0] ¢&,2¢=5¢ |1 0 0 O
31 6 -1 %7%%% 3 _14 12 -1
detA= = _
70 1 3 7 -35 15 3
4 5 2 1 4 -15 10 1
Then expand the determinant by the first row:
-14 12 -
detA=-35 15 3
-15 10 1

Transform the third column by adding the third row to the first one and
subtracting the third row multiplied by 3 from the second row:

r—>r +r
14 12 - rlz_”lz_%rs ~29 22 0
-35 15 3 = 10 -15 O
-15 10 1 -15 10 1
Expand the determinant by the third column:
-29 22
det A=
10 -15
We can still take out the common factor 5 from the last row:
-29 22
detA=5 5 3:5((—29)-(—3)—22-2):105.
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3. Inverse Matrices
Let A be a square matrix.
A matrix A is called an inverse matrix of A if
ATA=AAT =1,
where | is an identity matrix.

If the determinant of a matrix is equal to zero, then the matrix is called
singular; otherwise, if det A= 0, the matrix A is called regular.

If each element of a square matrix A is replaced by its cofactor, then the
transpose of the matrix obtained is called the adjoint matrix of A:

Ar Ao o ALY (An Ar o A
A A Al (AL A, e A
adJA_ cee oo e PR e e - e cee e PP
Ah,l An,Z An,n Ai,n AZ,n Ah,n

3.1. Three Lemmas

Lemma 1: Given a square matrix A of the order n, the sum of the products
of the elements of any row (or column) and the cofactors of another row
(column) is equal to zero:

Zn:ai,kAj,k =0, (i=]) (1)
k=1

and
Zak,iAk,j =0, (i=]). (2)
k=1

Proof: To prove (1), consider an auxiliary matrix A that is obtained from
the matrix A by replacing the j-th row with the i-th one:

a1 Qo Q3 - Gy Qi1 Qo Q3 - Qi

ajr &2 aj3 - Ajq i1 Qo 3z - Qij

Expand det A by the j-th row:
k=1 k=1
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The only difference between matrices A and A is the j-th row. However,
the cofactors A;, do not depend on the elements on the j-th row, and so

A = A, Which implies

L
detA= Zai,kALk .
k=1
On the other hand, the matrix A has two equal rows. Therefore, by the
properties of determinants,

- n
detA=>a; A =0, (i=]).
k=1
Statement (2) can be proven in a similar way.

Lemma 2: The matrix products A-adjA and adjA-A are diagonal
matrices, that is,

(A-adjA); ;=0 (i#1]),

Proof: If i+ j then, by Lemma 1,
k=1 k=1
and

k=1

Lemma 3: The diagonal elements of the matrices A-adjA and adjA- A
are equal to the determinant of the matrix A:

(A-adjA);; = (adjA- A);; =det A.
Proof: By the theorem of expansion of determinants according to a row,
det A= Zai,kp\i,k = Zai,kAtI,i =(A-adjA); ;.
k=1 k=1

Likewise, the theorem of expansion determinants by a column yields

det A= ZaklAkl ZAkakl (adJA A)||

k=1
Hence, the lemma.
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3.2. Theorem of Inverse Matrix

For any regular matrix A there exists the unique inverse matrix:

At adia.
det A

Any singular matrix has no an inverse matrix.

Proof:
1. Assume that there exists an inverse of matrix A. Then

AAT=1 =  detA-detA"'=1,
and hence det A=0.
Therefore, singular matrices have no inverse matrices.
2. Assume that each of the matrices, A™* and B™, is an inverse of A:

AAT=A"A=1 and AB'=B'A=1I.

Then
B'=B'l=B'AA'=(BT'AA'=IAT=A".

Therefore, there exists the unique inverse of A.

3. Find the inverse of matrix A.
By the Lemma 2,
(A-adjA); =0, if i=],
By the Lemma 3,
1
det A
Combining the above equalities, we obtain
1
det A
where the delta symbol o; ; denotes the matrix elements of an identity

matrix.
Therefore,

(Aadj A)i,i :1.

(Aadj A)i,j :5i,j y

At adja=1.
det A

Likewise, (iadj A)-A=1,and hence,
det A

L adja=Al
det A
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3.2.1. Examples of Calculations of Inverse Matrices
: : 3 4\ _ :
Example 1: Given the matrix A:(1 2), find the inverse of A.

Solution: First, calculate the determinant:

3 4
det A= =6-4=2.
1 2

Next, find the cofactors of all elements:
Ay =(-1)"2=2, A, =(-DH21=-1,
Poa = (—1)2+l 4=-4, A, = (—1)2+23 =3.
Then, find the adjoint matrix of A:
T T
2 - 2 -4
adja=| 2t B2 = .
Ay A, -4 3 -1 3

Finally, obtain

a1 (2 -4 12 -4 11 —32
CdetAl-1 3 ) 2(-1 3 ) 5 3 '

Verification:

1 90 e 9

and
2 -4\ (3 4 2 0 10
T : _L - =1.
2{-1 3 )1 2) 2{0 2 01
1 2 3
Example 2: Let A=|4 5 6 |. Find the inverse of A.
7 8 9

Solution: Calculate the determinant:

1 2 3 (1 2 3
detA={4 5 6/=/3 3 3|=0.
3 3 3 [3 3 3

Therefore, the given matrix is singular, and so it has no the inverse of A.
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1 -2 3

Example 3: Let A=|0 4 -1\ Find the inverse of matrix A.
5 0 1

Solution:

1) To calculate the determinant of A, add the first row doubled to the
second row. Then expand the determinant by the second column.

1 -2 3 1 -2 3
r,—>r+2n 2 5
detA=|0 4 -1 = 2 0 5:(—2)-(—1)1+25 1‘:—46.
5 0 1 5 0 1
2) Find the cofactors of the elements of the matrix.
4 -1 0 -1
= (=) =4, — (=12 = -5,
A_L,l()01‘ Ap =D
0 4 -2 3
— (=1 1+3 :_201 = (=1 2+1 :2’
Al,s()“‘ A= (D
1 3 1 -2
— _1 242 :_14’ — _1 2+3 :_10’
Ag,z()“‘ A= (1P
-2 3 1 3
_ (—1)3 — 10, — (=1)3*2 =1,
Ay =(-1) 4_1‘ A= (%2
1 -2
— (-1 3+3 —4.
A= (1" 4‘

3) Write down the adjoint matrix of A.
4 -5 -20 (4 2 -10

adjA=| 2 -14 -10| =| -5 -14 1
-10 1 4 -20 -10 4
4) The inverse of matrix A is
4 2 -10
S - VA
46
-20 -10 4
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5) Verification:
1 -2 3 4 2 -10

AA—1:—4—16 0 4 -1|| -5 -14 1
5 0 1)(-20 -10 4
—46 0 0 1 00
__ 1 0 -46 0 |=|/0 1 0f=1I.
46
0 0 -46) (0 1
Likewise,

—46 0 0 1
A-lAz—i 0 -46 0 |=/0 1 0|=1I.

46
0 0 -46 0 01
3 5 4 1
Example 4: Let A= and B = :
1 2 31
Solve for X the matrix equation
XA=B.

3 5
Solution: Note that det A= L =1+0, that is, A is a regular matrix.

Therefore, there exists the inverse of A:
X =B-A"l,
Find the inverse of matrix A.

_ 2 -1\ (2 -5
adjA= = =
5 3 -1 3

2 _5
A—lziade: .
det A -1 3
“ 4 1\(2 -5\ (7 -17
3 1)l=1 3) |5 —12/
7 —17\ (3 5) (4 1
X A= : = =B
5 —12)(1 2) |3 1

41
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3.3. Calculation of Inverse Matrices by Elementary
Transformations

Let A be a regular matrix.
The inverse of A can be found by means of the elementary transformations
of the following extended matrix

al,l al,n 1 -+ 0

(A1) =| oo oo e |
an,l an,n o --. 1

where | is the identity matrix of the corresponding order.
By making use of elementary row operations we have to transform the
extended matrix to the form (1|B). Then B=A™".
The following elementary transformations (involving only rows) can be
applied:

1) Multiplying a row by a nonzero number.

2) Adding a row to another row.

3 4
Example: Let AZ(l 2). Find the inverse of A.

3 4|1 0
1 2(0 1)

Multiply the second row by the number 2 and then subtract the result
from the first row:

Solution: Consider the extended matrix (A|l) :(

3 4|1 0 1 0|1 -2
— .
1 2|0 1 1 2|0 1
Subtract the first row from the second one:
1 0|1 -2 1 0|1 -2
— .
1 2|0 1 0 2|-1 3

Divide the second row by 2:
1 0/1 -2y [10]1 -2
0 2/-1 3 - 0 1 —E E '
B 2 2
The desired form is obtained and hence,

Alz[ N _32]_3(2 _4}
_E E 2\-1 3



Systems of Linear Equations
4. Systems of Linear Equations

4.1. Matrix Rank

An mxn matrix A is said to be the matrix of rank r, if
— there exists at least one regular submatrix of order r;
— every submatrix of a higher order is singular.

According to the definition,
rank A <min{m,n}.

The rank of a matrix can be evaluated by applying just those elementary
row and column operations which are used to simplify determinants, that is,
1. Interchanging two rows or columns.
2. Multiplying a row (column) by a nonzero number.
3. Multiplying a row (column) by a number and adding the result to
another row (column).
If a row or column consists of zeros then it can be omitted.
These operations are said to be elementary transformations of a matrix.

Theorem: If a matrix A is obtained from A by elementary transformations
then rank A=rank A.

Proof: Interchanging two rows or two columns of a matrix changes the
sign of the determinant.

Multiplying a row (column) by a nonzero number multiplies the
determinant by that number.

Adding a row (column) to another one holds the magnitude of the
determinant.

Therefore, all singular submatrices are transformed into singular
submatrices, and regular submatrices are transformed into regular
submatrices. Hence, the theorem.

By elementary transformations of a matrix we try to obtain as many zeros
as possible to reduce the matrix to the echelon form:

For instance,
2 7 -2 0 1
A=/0 6 1 -3 3
00 -1 4 2

Is the matrix of the reduced row echelon form.
The number of the rows gives the rank of A: rank A = 3.
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Examples:
4 -1 5 2
1 0 -3 3
1) Let A=
7 -2 13 1
3 -1 8 -2

Find the rank of A.
Solution: Subtract the first and fourth rows from the third one:

4 -1 5 2 4 -1 5 2
1 0 -3 3 1 0 -3 3
A= e P e
7 -2 13 1 0O 0 0 1
3 -1 8 -2 3 -1 8 -2
Add the third row multiplied by suitable numbers to the other rows:
4 -1 5 2 4 -1 5 0
n—n—2r
1 0 -3 1 0 -3 0
r,—r,—30 .
0O 0 0 1 0 0 0 1
r, =, +2r
3 -1 8 -2 3 -1 8 0

Subtracting the first row from the fourth row and then adding the
second row to the fourth one we obtain

4 -1 5 0 4 -1 5 O
1 0 -3 0 1 0 -3 0
el i ol .
0O 0 0 1 0O 0 0 1
-1 0 3 0 0O 0 0 O

Any further transformations are not necessary, because the
determinant of the order 4 is equal to zero, but there is a submatrix of
the third order the determinant of which is nonzero:

-1 5 0
0 -3 0|=(-1)-(-3)-1=3.
0 0 1

Hence, rank A = 3.
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4.2. Main Definitions
Consider a system of m linear equations with n unknowns:
Ay Xy +apX, ...+, X, =b

1)

A Xy + 8%y +.. 8 X, =Dy,

Here a; are numerical coefficients; b; are constants (i=1,2,---,m) and x;

are unknowns (j=12,---,n).
A solution of system (1) is a set of values of the unknowns x; that reduces

all equations (1) to identities. If there exists a solution of simultaneous
equations then the system is called consistent; otherwise, the system is
inconsistent.
Using matrix multiplications, system of equations (1) can be represented by
a single matrix equation

AX =B,
where A is the coefficient matrix consisting of a;;

B =||b;, || is called the non-homogeneous term; X is the column matrix,
whose elements are the unknowns X;:

the column matrix

a4 X b,

a a e a X b
A — 21 22 2N ’ X — 2 ’ B — 2

am1 am2 amn Xn bm

If the non-homogeneous term B is equal to zero, then the linear system is
called the homogeneous system:

AX =0.
Two linear systems are called equivalent, if they have the same solution
set.

Elementary transformations of the linear system is the process of
obtaining an equivalent linear system from the given system by the
following operations:
1) Interchange of two equations.
2) Multiplication of an equation by a nonzero number.
3) Addition of an equation multiplied by a constant to another
equation.

Each of the above operations generates an equivalent linear system.
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Two linear systems of equations are equivalent if one of them
can be obtained from another by the elementary transformations.

Applying the linear transformations we try to find an equivalent system
which can be easier solved.

4.3. Gaussian Elimination
Consider the augmented matrix of system (1):

a; ap o a,|b
a a a,. | b
(algy=| T
aml amz amn bm

There is one-to-one correspondence between the elementary
transformations of the linear system and linear row operations on the
augmented matrix. Indeed:
— Interchanging two equations of the system corresponds to
interchanging the rows of the augmented matrix.
— Multiplication of an equation by a nonzero number corresponds to
multiplication of the row by that number.
— Addition of two equations of the system corresponds to addition of
the rows of the matrix.
The main idea is the following.
First, transform the augmented matrix to the upper triangle form or row
echelon form:

a, .. 51
0 ap b,
0 0 a --|b.
(AIB) = | . s |
o 0 0 - &, .Er
O 0 O :

Then write down the linear system corresponding to the augmented matrix
in the triangle form or reduced row echelon form. This system is equivalent
to the given system but it has a simpler form.

Finally, solve the system obtained by the method of back substitution. If it
IS necessary, assign parametric values to some unknowns.

This systematic procedure of solving systems of linear equations by
elementary row operations is known as Gaussian elimination.
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4.3.1. Some Examples
1) Solve the system below by Gaussian elimination:
2%, — X, +5X3 =10
X, + X, —3X5 =2
2% +4X, + X3 =1
Solution: Reduce the augmented matrix to a triangle form:

2 -1 5|10 2 -1 5]10
1 1 -3|-2|po2,|2 2 —-6|-4
2 4 1|1 2 4 11
2 -1 5|10 2 -1 5|10
"5 3 _11|-14|p >3m0 3 -11]-14
"Ry 2 7] s 0 6 21|15
2 -1 5|10 2 -1 5|10
hor-2r,|0 3 -11|-14 r3—>;—33 0 3 -11|-14|
0 0 43|43 0 0 1|1

The later matrix corresponds to the system
2%, — X, +5%; =10
X3 =1
which is equivalent to the initial system.
Now the solution can be easily found:
2%, =10+x%, -5x, =4 = X =2.

X 2
Thus we obtain the solution X =| x, |=| —1| of the given sysytem.
X3 1

It is not difficult to verify the values of the unknowns satisfy all the given
equations:

X, +X, =33 =2+ (-1)-3-1=-2,
2X, +4X, + X3 =2-2+4-(-1)+1=1.
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2) Find all solutions of the system of equations via Gaussian elimination
X, + X, —X3=0
2% — X, —Xg =—2
4X, + X, —3X3=5

Solution: The system can be represented by the augmented matrix. Apply
the linear row operations:

1 1 -1]0 1 1 -1/0
r,—>r—2r
2 -1 -1|-2 -3 1|-2
r,—>r—2n
4 1 -3|5 0O 3 -1|9
1 1 -1/0
0 O 0| 7

The third row corresponds to the equation
0-%+0-X,+0-%X;=7,

which evidently has no solutions.

Therefore, the given system is inconsistent.

3) Use Gaussian elimination to solve the system of equations.
X+ X, — X3 —2X, =0
2%+ Xy = X3+ X, =2
— X + X, —=3X3 + X, =4

Solution: By elementary transformations, the augmented matrix can be
reduced to the row echelon form:

1 1 -1 -2|0 1 1 -1 -2|0
R—>nL+n

2 1 -1 1|-2 0 -1 1 5 |-2
rnh—>n—2n

-11 -3 1|4 0 2 -4 -1 4

1 1 -1 -2]0
0O 0 -2 9]0

The reduced matrix has the rank 3 and corresponds to the following system
of linear equations:
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X+ X, — X3 —2X%X, =0
— X, + X3 +5X, =2
The variable X, is considered to be an arbitrary parameter c, regardless of

the value of which the remaining values of x;, X,, and x; reduce all

equations of the given system to identities.
From the last equation we find

X3:_X4.

Then we obtain

X, =2+ X3 +5X, :thgx4+5x4 :2+%x4,

X, = Xg— X, +2X, :gx4 —%M —2+2X,=—2-3X,.
The general solution of the system
—-2-3C

depends on the arbitrary parameter c. Any particular value of ¢ gives a
particular solution of the system. Assigning, for instance, the zero values to

-2
: . . 2
the parameter c, we obtain a particular solution X, = 0
0
-8
. : ) ) 21
Setting ¢ = 2 we obtain another particular solution X, =
2

Conclusion: The given system has an infinite number of solutions.
Solution check: Let us verify that the set of values
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1
X, =—-2-3C, x2:2+79c, Xg=—C, X,=C
satisfies the given system of equations:
X+ X, — X3 —2X, =0
2X + Xy = Xg+ X, =—2 =
— X+ X, —=3X3 + X, =4

—2—30+2+gc—gc—2c:0
2 2

—4—6c+2+%c—gc+c=—2 = -2=-2

2+3c+2+gc—£c+c:4
2 2
That is true.

4.4. Homogeneous Systems of Linear Equations
A homogeneous system of linear equations has the following form;
AX =0, (2)

where A is the coefficient matrix, and X is the column matrix of the
unknownes.

0
Evidently, any homogeneous system has the particular solution X =| :

which is called the trivial solution.

Theorem:
If X, and X, are solutions of a homogeneous system then

a linear combinations of the solutions
C, X, +C, X,
Is also a solution of the system.

Proof: By the conditions of the theorem,
AX,;=0 and AX,=0.
For any constants ¢, and c,
c,AX;=0 = A(cX,)=0,
C,AX,=0 = A(c,X,)=0.
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Adding together the above identities we obtain

A(c, X,)+A(c,X,) =0,
which implies
A(c, X, +¢,X,)=0.
Hence, the theorem.

4.4.1. Examples

1) Use Gaussian elimination to solve the following homogeneous system
of equations.

X, — X, —X3+3%X, =0
Xy + X, —2X3+ X, =0
4%, —2X, +4X3+ X, =0

Solution: By elementary transformations, the coefficient matrix can be
reduced to the row echelon form

1 -1 -1 3 1 -1 -1 3
1 1 -21 0 2 -1 -2
R, —>r—4n
4 -2 4 1 0 2 8 -1
1 -1 -1 3
0O 0 9 -9

The rank of this matrix equals 3, and so the system with four unknowns has
an infinite number of solutions depending on one free variable. If we
choose X, as the free variable and set x, =c, then the leading unknowns,

X;, X, and X, are expressed through the parameter c. The above matrix
corresponds to the following homogeneous system

X, — X, —X3+3c=0
2X, —X3—2¢=0
9%;—-9¢c=0
The last equation implies X; =c.
Using the method of back substitution we obtain

2X, = X3+2C=3C = xzzgc,
3 1
X, =X, +X,—3C=—C+C—-3c=—=C.
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Therefore, the general solution of the system is

TS

2

3
= —C =

X 5 C

C
C

| =

- |—\|\>|ooN

To obtain a particular solution X, we have to assign some numerical value
to the parameter c. If we set ¢ = 4, then

-2
X. < 6
) a4
4
Solution check: The set of values of the unknowns
1 3

reduces equations of the given linear system to the identities:

—EC—§C—C+3C=O
? 0=0
—£c+§c—20+c:0 = 0=0
2 2 0=0
—ﬂc—§c+4c+c:0
2 2
1 -1 -1 1
2) Let A=|2 -2 1 1].
5 -5 -2 4
Find the solution of the homogeneous system of linear equations
AX =0.
Solution: Transform the coefficient matrix to the row echelon form:
1 -1 -1 1 1 -1 -1 1
rn,—r—2n
2 -2 1 1 O 0 3 -1
rh—>rL—2L—0
5 -5 -2 4 O 0 -3 1
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1 -1 -1 1 1 -1 -1 1
0 0 3 -1|p>r+n|0 0 3 -1|
0 0 -3 1 00 0 0

Since rank A=2, we have to choose two unknowns as the leading
unknowns and to assign parametric values to the remaining unknowns.

Setting X, =c, and X; = ¢, we obtain the following linear system:
3c,-%x,=0

Therefore,

X,=3c, and x, =%(Cl+02 —-3c,) :%cl—cz.

Thus, the given system has the following general solution:

lC —C
5, GG
X= G
C,

3c,

In view of the matrix properties, the general solution can be also expressed
as the linear combination of particular solutions:

%Cl —C 1/2 -1
° 0 1 0
X=| "1 |+ =C 0 +C, 1
0 C
0 3c, 0 3
1/2 -1
1

0
The particular solutions X, = 0 and X, = L form the system of

0 3
solutions which is called the fundamental set of solutions.

Thus,
X =¢ X, +¢C, X,.
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-1 1 -1
3) Let A= 3 -1 -1
2 1 -3

1) Solve the following homogeneous system of linear equations

AX =0.
i) Explain why there are no solutions, an infinite number of solutions,
or exactly one solution.

Solution: Note that any homogeneous system is consistent and has at least
the trivial solution.
Transform the coefficient matrix to the triangular or row echelon form.

-1 1 -1 -1 1 -1 -1 1 -1
r,—>1,+3n
L —>rp+2n

2 2 -3 0 4 -5 0O 0 1

The rank of A equals 3. Therefore, there are no free variables and the
system

— X +X, — X3=0
X3 =0

has the trivial solution x, =X, =X; =0, only.

45. Cramer’'s Rule

There is a particular case when the solution of a system of linear equations
can be written in the explicit form. The corresponding theorem is known as
Cramer’s Rule whose importance is determined by its applications in
theoretical investigations.

Cramer’s Rule: Let
AX=B (3)

be a system of n linear equations with n unknowns.

If the coefficient matrix A is regular, then the system is consistent and has a
unique solution set {x,, X,, ..., X, } which is represented by the formula:

X; = — i1=1,2,...,n, (4)

where D =det A; D, is the determinant of the matrix obtained by replacing

the i-th column of A with the column matrix B:
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&y v oAgg b oAy o

app an,i—l bn an,i+1 o+ Qpp

Proof: We have to prove the following statements:
1) asolution is unique;
2) formulas (4) follow from system (3);
3) formulas (4) yield system (3).

Since det A= 0, there exists the inverse of A. Therefore, matrix equality (3)
implies

X =A"B. (5)
By the theorem of inverse matrix, for any regular matrix A there exists a
unique inverse matrix

S
det A
that proves the uniqueness of solution (5).
The i-th row of adjA is formed by the cofactors A;, A,;, ..., A,; of the
elements in the i-th column of the matrix A. The equality (5) implies
by
x; = (A'B), :l(Al_ A e Ah_) b, :lzn:
i i D N N N D ~
b

n
The sum on the right side is the expansion of the determinant D; in terms

of the elements in the i-th column. Hence, we have obtained the desired
formula:

LD
2

n
Now prove that the set {X;, X,,..., X}, with X; :%Z b, , implies

system (3).
Multiply both sides of this equality by Da;; and then sum the result over i:
DZaJ,x —ZZA( a;;b.
i=1k=1
Interchange the order of summation in the expression on the right side.
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n n n
D_Zaj,i X; :ZkaAk,iaj,i' (6)
In view of the theorem of inverse matrix,
n
i=1

where &,; is the Kronecker delta.
The Kronecker delta takes away the summation over k in expression (6):

n n
Dzaj,i Xi = Dzbké‘kj = DbJ .
i=1 k=1
Hence, we have the desired linear system of equations:
n
Za” X|:bj (|=1, 2,...,n).
i=1

The theorem is proven.

Example: Use Cramer’s Rule to solve the following system of linear

equations.
2%, — X, +5X3 =10
X; + Xy —3Xg =2
2% +4X, + X3 =1
Solution:
2 -1 5]h~n2h |9 _3 11
I‘3—>I’3—I’1 _3 11
D=|1 1 -3 = 1 1 -3|=- =43,
5 -4
2 4 1 0 5 -4
10 -1 5]f1=0s0% 10 4 -10
I’2—>r2+r3 4 _10
D,=-2 1 -3 = 0 9 —1:9 1=86,
1 4 1 1 4 1
2 10 5 sty -2F, 0 9 4 9 4
D,=|1 -2 -3 = 1 -2 —3=—5 7:—43,
2 1 1 0 5 7
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2 -1 10]1>02% 0 -5 9

3—>r3—r1 -5 9
D;=(1 1 -2 = 1 1 -2|=- =43.
2 5
2 4 1 0 2 5
Therefore,
X].:_:—:_’ 2:—:—:—1’ 3:—:—:1_
D 43 D 43 D 43

Compare this solution with that obtained by Gaussian elimination in
Example 1, p. 44.

4.6. Cramer’'s General Rule

Cramer's General Rule formulates the existence condition of a solution for
any given system of linear equations.
Cramer's General Rule: A system of m linear equations with n unknowns

Ay X +anX, +...+a, X, =b
Ay Xy + 8y Xy ...+ 3y, X, =D,

A X Fa,% +...+a X, =b

Is consistent if and only if the rank of the augmented matrix is equal to the rank of
the coefficient matrix.

Proof: Let A be the coefficient matrix and let A be the augmented matrix of the
given system. We have to prove that
(@) If the system is consistent, then rank A=rank A .

(b) If rank A=rank A, then the system is consistent.
To prove statement (a), we have to assume that the system is consistent.

Consider the augmented matrix A:

a, o Ay | by

A=| : : :

An1 0 App bm
If we subtract the first column multiplied by x,, the second column multiplied by
X, , and so on from the last column, then we obtain the matrix of the same rank

as A (by the theorem of matrix rank):
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8, v Ay, | b—(ag X +.+ag X))
rank A = rank : :

am,l am,n bm_(am,1X1+"'+am,an)

Since the system is consistent, each elements of the last column equals zero.
Therefore,

&y v 8, |0 &1 "t A
rank A =rank| : ... : | l=rank| : .- : |=rank A.
a a 0 a a

m,1 m,n m,1 m,n

(b) Now suppose that rank A=rank A =r. It means there exists a nonsingular

rxr submatrix A of the matrix A, by which we select r leading unknowns and
assign parametric values to the remaining (n—r) free unknowns. The reduced
system of linear equations is equivalent to the initial system, and, by Cramer’s
Rule, it has a unique solution for each set of values of the free unknowns.

Hence, the theorem.

Corollary:
)] If rank A=rank A and equals the number n of unknowns, then the

solution of the system is unique.
i) If rank A=rank A <n then there exist an infinite number of solutions

of the given system.,

Statement i) follows from the Cramer’s Rule.

If rank A=rank A =r < n then the given system is equivalent to the system of r
linear equations with r leading unknowns.

An infinite number of the values of the remaining (n - r) unknowns leads to an
infinite number of solutions.

Examples:

1. The system of linear equations is given below. Formulate the
conditions on a, b, and ¢, making the system

X +2X, +3X; =2

4%, +5X, +6X3 =D

7%, +8X, +9%X;=¢C
to be inconsistent.

Solution: Consider the augmented matrix and transform it to the
reduced row echelon form.
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1 2 3|a 1 2 3| a
r,—>n—2n
4 5 6|b 2 1 0/b-2a
rR,—>r—3n
7 8 9c 4 2 0|c-3a
1 2 3 a
bL—>n-2r,2 1 0| b-2a
0 0 0Ojlc—-3a-2b

The system is inconsistent, if

c—3a-2b=0.
Otherwise, one of unknowns is a parametric variable, and the system
has an infinite number of solutions.

2. Given the reduced row echelon form of the augmented matrix,

1 3 -1 5|2
— |07 0 24
A= ,

0 0 3 01

0O 0 0 1|3

find the number of solutions of the corresponding system. It is not
necessary to solve the system.

Solution: The rank of the coefficient matrix equals the rank of the
augmented matrix and equals the number of the unknowns. Hence, by
the Corollary to Cramer’s General Rule, the solution is unique.

3. Letasystem of linear equations be given by the augmented matrix
1 2 3 4|1

0 56 7|2

0 0 8 93]
0 00 Ola
How many solutions has the system?

Solution: If a=#0 then rank A=4 while rank A=3. By Cramer’s
General Rule, the system is inconsistent, and so it has no solutions.

If a=0 then rank A=rank A =3, while the number of the unknowns is
n=4. So one of the unknowns has to be considered as a parameter, and
the system has a solution for each value of that parameter. Hence, the
system has an infinite number of solutions.

A=
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VECTOR ALGEBRA
5. Vectors

5.1. Basic Definitions

A three-dimensional vector in some coordinate system is an ordered
triplet of numbers that obeys certain rules of addition and multiplication,
and that are transformed under rotation of a coordinate system just as the
coordinates of a point.
The members of the triplet are called the coordinates of the vector.
Likewise, one can define an n-dimensional vector.
Usually, vectors are denoted by boldface letters: a, b, c, .... The notation
a={a,,a,,as}

means that the numbers a,, a, and a, are the coordinates of the vector a
in a three-dimensional coordinate system.
Two vectors, a=q{a,,a,,a;} and b={b,b,, b}, are equal, if their
coordinates are respectively equal, that is,

a, =b,,

a=b o a, =b,,

as = b;.
Note that a vector equality is equivalent to the system of three scalar
equalities for the coordinates of the vector.

Linear vector operations include the multiplication of a vector by a scalar
quantity and the addition of vectors.

If a vector a={a,,a,,a,} is multiplied by a scalar A, then b= A4a is the
vector such that

by = Aay,
b, = Ja,,
by = Aas,.
The sum of two vectors a={a,,a,,a;} and b ={b,,b,,b,} is the vector
c=a+b={a, +b,a,+b,,a;+b;}.
The difference between two vectors is defined in terms of addition:
c=a-b=a+(-h).

Therefore,
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5.2. Geometric Interpretation

5.2.1. Vectors in Three-Dimensional Space
Consider a rectangular coordinate system.
Let a={a,,a,,a,} be a given vector, and P, and P, be two points with the
coordinates (x;,Y,,z) and (X,,Y,,z,), respectively.
The points P (X;,Y;,2;) and P,(X,,Y,,z,) can be selected so as to satisfy

conditions
a =Xy — Xy, a, =Y, = VY1, Az =12~ 1.

N
Therefore, vector a can be interpreted as the directed line segment PP,
from P, to P,;:

._’_/_fl—i'/-’-/?})z
A

1

The coordinates of PP, are equal to the differences between the
corresponding coordinates of the points P,(x,,Y,,z,) and P,(x,,¥;,%):

PP, ={X, =X, ¥, = V1.2, = 2, }.

The point P, is the base of PP, and P, is the head. The base of a vector is
also called the vector tail or the origin of the vector.

5
The length of a vector PP, is defined as the length of the line segment
joining P, and P, .

Note that a vector is a quantity possessing both magnitude and direction at
once. The boldface letter a represents a vector quantity, while a =|a| is the
magnitude of the vector a, that is, a is a scalar quantity entirely defined by
a numerical value.

If a vector joins the origin of the coordinate system with a point P(x, Y, 2),
then it is called the radius-vector of the point P and denoted as r.

A¥
) T
P P(x,y,2)
0 x ¥
= ____ﬁ_ﬁ}lx
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5.2.2. Linear Vector Operations

Equality of Vectors
By parallel translation, equal vectors should coincide with each other:

—> ]?(“j — —>
p AD= . C B___iﬁ‘_]%f_l_)_c____-c
A Hﬁ A D

Scalar Multiplication
The length of the vector b=Aa isb=1]|a.

If 2 >0 then b is a vector of the same direction as a:
i

%
.

b=2q .

If 4 <0 then vector b= Aa has the opposite direction with respect to a:
&

b=-2a

- -
The opposite vector of AB is the vector BA=—-AB.
/B /B
A A
The length of a unit vector equals unity. If a is a non-zero vector then

u= a Is the unit vector in the direction of a.
a

The Sum of Two Vectors

Triangle Rule Parallelogram Rule

c=a+b
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The Difference Between Two Vectors

In order to subtract a vector b from a, add the opposite of b to a:
c=a-b=a+(-h).

Thus, the difference between two vectors a and b is the vectorc =a-"b

such that c+b = a.

c=a-b

5.2.3. Projection of a Vector in a Given Direction

Let & be an angle between two vectors, a and b.
The quantity

Proj,a=acosd (1)
is called the projection of a on b.

If & is an acute angle then the projection is positive.
If & is an obtuse angle then the projection is negative.

Proj,a =0 ————

One can easily prove that

c Proj,(@+ ¢} =Proj,a+Proj,c
a
| b

e
—

If the direction is determined by the x-axis, then the projection of a onto the
x-axis equals the difference between the coordinates of the endpoints of the
vector:

B —
a=4
i
A Proj @=Xg— X,
WX
Fal
.?CA _?CB

63



Vectors

5.2.4. Properties of Linear Vector Operations

All the below formulated properties are based on the properties of real
numbers, and they are result of the definitions of linear vector operations.
Proofs can be easily performed by the reader.

1) The commutative law for addition:
atb=Db+a

b

c=b+a

b
2) The associative law for addition:

at(b+c)=(@+b)+c=a+b+c
c
d
b d=a+bh+c

——

a
3) The distributive laws for multiplication over addition:

Ala+b)=1a+1Ab, U+wa=1a+ua,

—AR E _—
a=A8 - ia=4D
b:BC% ///,m<;/m\\\; ib=DF
a+b=AC =

= Ala+b)=AE
4 0 . ( )

5.3. Decomposition of Vectors into Components

5.3.1. Rectangular Orthogonal Basis

1) Leti= {1, 0, 0} be the unit vector in the positive direction of the x-
axis. Any vector a={a,,0,0} can be expressed as

a={a,,0,0}=a,{1,0,0}=a,i.
The vector i is said to be a basis in an one-dimensional space of vectors.
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a

LY
Fl

i : x
LY | LY
r Fd

i dx

2) Leti={1,0,0}andj={0, 1, O} be two unit vectors in the positive
directions of the x-axis and y-axis, respectively.
Any vector a={a,,a,,0} can be expressed as

a={a,,a,,0=a,{1,0,0}+a,{0,1,0}=a,i+a, j.

SO - — 4

\f‘H

They say that i and j are the basis vectors in a two-dimensional space of
vectors.

3) Leti={1,0,0}j={0, 1, 0}, and k ={0, 0, 1} be three mutually
orthogonal unit vectors in the positive directions of the Cartesian
coordinate axes.

A¥
dyl .
e
“"\-.
\"\
R |
A I
J |
|
|
L a
1 -
0 I i x \.\
4 f 4
- | s
],. k'\-\_\_‘ : i
‘_ '\-\\ |,H
C?Z T

Any vector a={a,,a,,a,} can be expressed as the linear combination of
the vectors i, jand k:
a={a,,a,,a,}=2a,{1,0,0}+a,{0,1,0}+4a,{0,0,1}.
Therefore, we obtain the resolution of an arbitrary vector a
a=a,i+a,J+a,k (2)
over the orthogonal basis of vectors, where quantities a,, a, and a, are
called the coordinates of the vector a with respect to this basis.
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5.3.2. Linear Dependence of Vectors

Let &, a,,...,a, beany vectorsand A;, 1,,...,4, be numbers.
The expression of the form
g+, +...+4,Q,
is called a linear combination of the vectors a,, a,, ..., a, .
If there exists a non-trivial solution of the homogeneous vector equation
i +4,8,+...+4,a,=0 (3)
with respectto A,, 4,,...,4,, then itis said that {a,, a,, ..., &,} is the set of
linear dependent vectors.
Otherwise, if equation (3) has only the trivial solution
Ah=A,=...=4,=0,
then {a,, a,, ..., a,} is called the set of linear independent vectors.

In other words, the set of vectors is linear dependent, if one of the vectors
can be expressed as a linear combination of the other vectors of the set.
For instance, if 1, #0, then

1
a.l :_A_(}uzaz +...+/1n a.n).
1

Theorem:
1) Any two non-zero vectors are linear dependent, if and only if they
are collinear.

2) Any three non-zero vectors are linear dependent, if and only if they
are coplanar.

3) Any four vectors in a three-dimensional space are linear dependent.

Important note: The theorem states that two non-collinear vectors are
linear independent, and three non-coplanar vectors are linear independent.

Proof:
1) Two vectors, a, and a,, are linear dependent, if the equation

A+ 4,8, =0
has a non-zero solution with respect to 4, and 4, .
In this case, 4,a, is the opposite vector of 1,a,, thatis, a, and a, are
collinear vectors.

Hence, any two collinear vectors are linear dependent, and any two non-
collinear vectors are linear independent.
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2) Consider a set of three vectors {a,, a,, a;}. In the coordinate form, the
vector equation
Aidy + A8, +A58;,=0
can be expressed as the homogeneous system of the following linear
equations:
Aj@y; + Ay8p + 4585, =0,

At first, let us assume that the vectors a, ={a;;,a;,, a5},
a, ={a,;, 8y, 8,3} and a; ={a,,, a,,, 853} are coplanar.
Then there exists a coordinate system in which

i3 =853 =853 =0.
Therefore, the above homogeneous system is reduced to the system of two
linear equations with three unknowns 4,, 1, and 15, and hence, has a

non-zero solution.
Thus, a set of three coplanar vectors is linear dependent.
Assume now that vectors a,, a, and a, are non-coplanar.

A linear combination of vectors a, and a, is a vector lying in the same
plane as a, and a,. Hence, a; cannot be expressed as a linear combination
of a and a,, and so a set of three non-coplanar vectors is linear
independent.
3) In case of four vectors, the equation

A1y + 4,8, + Aza5+ 4,8, =0,
IS equivalent to the homogeneous system of three linear equations with four
unknowns 4,, 4,, 45, and 4,. Such system has an infinite number of
solutions. Hence, any set of four vectors is linear dependent.

A set of n linear independent vectors is called a basis in the n-dimension
space of vectors. Therefore, any three non-coplanar vectors form the basis
in the three-dimensional space of vectors, that is, any vector d can be
expressed as a linear combination of the basis vectors:

d=d,;a +d,a, +d,a;.

This formula generalizes the concept of the rectangular vector basis {i, j, k}
to an arbitrary set {a, a,, a;} of non-coplanar vectors in a three-

dimensional space. The numbers d,, d, and d, are called the coordinates
of d in the basis of vectors a,, a, and a;.
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5.3.3. Vector Bases

Let {a,,a8,,8,} and {a,6a, a3} be two different bases in a three-
dimensional space of vectors. By the theorem of linear independent
vectors,

d=d,a +d,a,+d,a, 4)
and

d=d;a +d,a, +d,a, (5)
for an arbitrary vector d.

In order to find relations between the coordinates of d in these bases, we
need to resolve vectors a;, &, and &, into the basis vectors a,, a, and a,:

& =88 +8y,8, + 8,385
8, = @p8 + 88, + 38,383
83 = d318 T 83,8, + g8
Coefficients a; of the linear combinations are the coordinates of the

vectors @, in the basis of vectors a,;, a, and a;.

Substituting these expressions in equality (5) and combining the similar
terms we obtain

3 - - -
d= Z(alkdl +8,,d, +agd;) 8, .
k=1
In view of equality (4), we get the transformation formulas of the
coordinates of a vector from one basis to another:

d; =a;,d; +a,,d, +a5d,
d, =a;,d; +ayd, +2a;,d;

d; =ag30; +ayd, +agd;

A transformation of a rectangular basis by rotation of the coordinate system
Is considered in section 5.7.

Example: Let be given the vector resolution d =4i+7j+k and the
basis vectors a, ={3,0,-5}, a, ={1,1,-8} and a, ={7,-2,0}.
To find the coordinates of d in the basis of &, &, and a;, we have to
solve the system of linear equations:
4=3d,+d,+7d,4
7=0.d,+d,-2d, = d,=5 d,=3and d,=-2.
1=5d, -8d,+0-d,
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5.4. Scalar Product of Vectors

Assume that vectors a and b are given by their coordinates in a
rectangular coordinate system:
a={a,,a,,a,} and b={b,,b,b,}.

The scalar product a-b is a number that equals the sum of the products of
the corresponding coordinates:
a-b=a,b, +ab, +a,b,. (6)

The scalar product is also known as inner or dot product. It is also denoted
as (a, b).

Theorem: If @ is the angle between vectors a and b then
a-b=abcoso, (7)
where a and b are the lengths of the vectors.

Proof: Let us choose a rectangular coordinate system such that
— both vectors, a and b, lie in the x,y-plane;
— the x-axis is directed along the vector a.

1Y b aZ{Q,O,O}
BT b={b.b,.0)

a X
>

b, a

Since a,=a, a,=a, =0, and b, =bcosd, we obtain the desired result.
The theorem states that
a-b=aProj,b=bProj,a,

cosQ:E-E,
ab
where a and % are the unit vectors in the directions of a and b,
a

correspondingly.
If aLlb then cosé= cos% =0, which implies the following orthogonality
condition of the vectors a={a,,a,,a,} and b={b,,b,,b,}:

a,b, +a,b, +a,b, =0.

If b=a then §=0, cos@ =1, and so
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2 2 2 2
a-a=a“=a;+a, +a;.
Therefore, the length of the vector a is expressed as

a=,/a;+a; +a’.

Applying formulas (6) and (7) we find the cosine of the angle between
vectors a and b:

a-b a.b, +a,b, +a,b,

cos6 = b= 2,2 422 [h2 L 12 4 h2
a \/ax+ay+az\/bx+by+bz

The most important applications of the scalar product are related with
finding the angle between vectors.

5.4.1. Properties of the Scalar Product

The below properties are based on the definition of the scalar product. They
can be easily proved by the reader.

1) The scalar product is commutative:
a-b=b-a.
2) The scalar product is distributive:
(a+b)-c=a-c+b-c.

3) If the scalar product of two non-zero vectors equals zero, then the
vectors are perpendicular; and vice versa, if two vectors are
perpendicular then their scalar product equals zero:

alb < a-b=0.

5.4.2. Examples

Example 1: Leti=4{1,0,0} j={0,1, 0} and k={0, 0, 1} be three
basis vectors in a rectangular Cartesian coordinate system. Then
-i=j-j=k-k=1,
i-j=i-k=j-k=0.
Example 2: If a = {2, -1, 3}, b={5,7, 4} and 4 is the angle between
vectors a and b, then
a-b=2-5+(-1)-7+3-4=15,

a=lal=a-a=422+(-1)%+3 =14,
b=|bl=+b-b=+5%+7%+4? =/80 =44/5,
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a-b 15 3
cosd = = =70,
lal-|b| 44145 56
Example 3: Find the angle between two vectors a={3,2,-5} and
b={5,7, 4}.
Solution:

a-b=3-1+4-3+(-5)-3=0
Since the scalar product is equal to zero, the vectors are orthogonal.
Example 4: Let p=a+b and g =a-b. Simplify the scalar product of

the vectors p and q.
Solution:

p-q=(a+b)-(a-b)=a*-a-b+b-a-b’*=a®-b*.

Example 5: Given two sides AB and AC of the triangle ABC and the angle
6 between these side, find the third side of the triangle.

A4

b

Solution: Let us denote a= AB, b= AC and c=CB. Then
c=a-b = c?’=(a-b)*=a*+b*-2a-b =
c2=a?+b?—2abcosd, c=+c2.

5.4.3. Direction Cosines

Let «, £ and y be the angles between a unit vector u and the axes of a
rectangular coordinate system. The cosines of these angles are called the
direction cosines.

Theorem: In a rectangular coordinate system, the coordinates
Uy, Uy, and u, of a unit vector u={u,,u,,u,} are equal to the direction
Ccosines.

The theorem follows from the definition of the scalar product. The scalar

product of the unit vectors u={u,,u,,u,} and i={1 0,0} can be written

as
u-i=u, and u-i=/u|-|i|-cosa=cosa,
and so u, =cosa .
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Likewise,
u-j=u,=cosp and u-k=u,=cosy,

which required to be proved.
By the definition of a unit vector,

luP=u; +ul+u? =1
Therefore,
cos? o +cos? f+cos?y =1.

The direction cosines of an arbitrary vector a can be expressed as

a a a
cosa =—*, cosf=—L, cosy=—=,
a a a

5.5. Vector Product
Given the vectors a={a,,a,,a,} and b={b,,b,,b,} in a rectangular

coordinate system, the vector product axb is the vector, which is defined
by the formula

b
axb=|a, a, a,|, (8)
b, b, b,

where i, j and k are the unit vectors of the rectangular coordinate basis.

The vector product is also known as cross product. It is also denoted as
[a,b].

Expanding the determinant by the first row we obtain

axb=(a,b, —a,b )i+ (ab, —a,b,)j+(ab, —a,b,)k.

Theorem: Let a and b be two non-parallel vectors. Then
1)  thevector c =axb is orthogonal to both a and b;
i)  the length of c is expressed by the formula
c=absing,
where & is the angle between a and b;
1)  the set of vectors {a, b, c} is a right-handed triplet as it is shown in
the figure below.

c=axh

c=absmd
b cla
c L b
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Proof: Let the rectangular coordinate system be chosen such that both
vectors a and b lie in the x,y-plane, and the x-axis is directed along a.

AV b
3 R

=~
\fH

Then a={a,0,0} and b={bcosé, bsing, 0}.
Therefore,
[ j k
c=axb=| a 0 0|=absinfdk.
bcosd bsingd 0

Therefore, |c|=asing and c is directed along the z-axis which is
perpendicular to the x,y-plane. Hence, the theorem.

5.5.1. Properties of the Vector Product
1) The vector product is anti-commutative:
axb=-bxa.
2) The vector product is distributive:
(a+b)xc=axc+bxc.

3) The length of the vector c=axb is equal to the area of the
parallelogram with adjacent sides a and b.

b
A =absind /
¢

a

Corollary: The area of the triangle with adjacent sides a and b is given
by formula
b
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4) The vector product of two collinear vectors equals zero.

Properties 1) and 2) follow from the properties of determinants.
Indeed,

I ] kK I ] k
axb=la, a, a,=-b, b, b,/=-bxa,
b, b, b, a, a, a,
i J
(@+b)xc=la,+b, a,+b, a,+b,
Cy c, c,
) kj (i ]k
=la, a, a,[+b, b, b=axc+bxc.
¢, C G| [cx ¢, ¢

Property 3) follows from the theorem of vector product.
Property 4) is quite evident.

5.5.2. Examples

1) Leti={1,0,0}j={0, 1,0} and k=40, 0, 1} be three basis vectors
of the rectangular Cartesian coordinate system. By the definition of the
vector product,

i ] k i ] k i j ok
ixj=[l 0 0=k, kxi=0 0 1|=j, jxk=0 1 O0l=i.
010 100 00 1

That is,
Ixj=k, kxi=j, Jjxk=i.
2) Let p=a+b and g =a-b. Simplify the vector product of the
vectors p and g.

Solution:
pxg=(a+b)x(a-b)

=axa—axb+bxa-bxb=2bxa.
3) Let ABC be a triangle with the vertices at the points A(1, 0, -2), B(1, 5,
0) and C(0, 4, -1). Find the area A of the triangle.
Solution: Consider the vectors a= AB={0,5,2} and b=AC ={-1,4,1}.
74



Vectors

By the properties of the vector product,

A=Liaxbl.
2
Find the vector product:
i j Kk
axb=0 5 2|=-3i-2j+5k.
-1 4 1

Therefore,

A:%\/(—B)Z +(=2)% +52 =§.

5.6. Scalar Triple Product

The scalar product and the vector product may be combined into the scalar
triple product (or mixed product):

([a,b],c)=(axhb)-c.
Theorem: Given three vectors a={a,,a,,a,}, b={b,b,,b} and
¢ ={c,,c,,c,} in some rectangular coordinate system, the scalar triple
product is defined by the formula

a, a, a,
(@axb)-c=|b, b, b,|. 9)
¢, C, G

Proof: Carrying out the scalar product of the vectors
axb= (aybZ — azby)i +(a,b,—ab )+ (axby - aybx)k
and
c=c,d+c,j+ck

we obtain
(axb)-c=(a,b, —a,b,)c, +(a,b, —a,b,)c, +(ab, —a,b,)c,

a, a, a,
—b, b, by
¢, ¢, ¢

Geometric Interpretation. The absolute value of the number (axb)-c is
the volume of a parallelepiped formed by the vectors a,b and ¢ as it is
shown in the figure below.
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Indeed, the volume of the parallelepiped is equal to the product of the area
of the base and the height.
By the theorem of scalar product,

(axb)-c=laxb]-|c|cose.
The quantity |axb| equals the area of the parallelogram, and the product
|c |cose equals the height of the parallelepiped.

Corollary 1: If three vectors are coplanar then the scalar triple product is
equal to zero.

Corollary 2: Four points A, B, C, and D lie in the same plane, if the scalar

triple product (ABx AC) AD is equal to zero.

5.6.1. Properties of the Scalar Triple Product

Consider the scalar triple product a-(bxc).
1) By the properties of the scalar product, a-(bxc)=(bxc)-a.
2) In view of the properties of determinants,

a, a, a,| |b, b, b,
b, b, b|=lc, ¢, ¢,
¢ C C| |3, a, a

Therefore, a-(bxc)=(axb)-c.

Since the order of the dot and cross symbols is meaningless, the product
a-(bxc) is simply denoted by abc.

Using the properties of determinants it is not difficult to see that

a, a, a,| |¢ ¢, ¢ | (b, b b
abc={b, b, b,|=la, a, a,|=[c, ¢, ¢
¢ ¢ ¢C| |bo b, b |a, a, a
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Therefore,
abc = cab = bca.
Likewise,
a, a, a, b, b, b, a, a, a,
abc=b, b, b,|=—a, a, a,|=-¢, ¢, ¢,|,
c, ¢, ¢ C G, b, by, b,
and so

abc = —bac = - ach.
In view of the theorem of linear dependent vectors, any three linear
dependent vectors are coplanar. Hence,

The triple product of non-zero vectors equals zero, if and only if
the vectors are linear dependent.

5.6.2. Examples

1) Determine whether the points A(-1, 2,2), B(3,3,4), C(2,-2,10), and
D(0, 2,2) lie on the same plane.

Solution: Join the point A with the other points to obtain the vectors
a=AB={41 2}, b=AC={34,8}, and c=AD={1,0,0}.
Find the scalar triple product:

O 0N

_‘1 2

=0.
\ 4

Therefore, the vectors lie in a plane, that means the given points lie in the
same plane.

2) Find the volume V of the tetrahedron with the vertices at the points
A(1,0,2), B(3,-1,4), C(1,5,2),and D(4,4,4).

Solution: Consider a parallelepiped whose adjacent vertices are at the
given points.
The volume V of the parallelepiped is equal to the absolute value of the

triple scalar product of the vectors AB, AC, and AD.

The volume of the tetrahedron is given by the formula V = %Vp :
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Since

AB={2,-12}, AC={0,5,0}, and AD={3 4,2},
we obtain

2 2
T 2 2
ABACAD=|0 5 O=5‘ ‘le.
3 4
3 4 2
Therefore,
v=10_3
6 3

3) The tetrahedron is given by the vertices A(1,0,2), B(3,-1,4),
C(5,2),and D(4,4,4).

Find the height from the point D to the base ABC.
D

C
Solution: In view of the formula
v=2ish,
3
where h is the height from the point D, we need to know the volume V of
the tetrahedron and the area S of the base ABC to find h.
According to Example 2, the volume of the tetrahedron equals 5/3.

The area of the triangle ABC can be found just in a similar way as in
Example 2, section 1.5.2:

A=%¢ABXACL

- - I J K - —
ABxAC =[2 -1 2|=10i-10k, |ABxAC|=10+2.
0 5 0
Therefore,
A 52 2°
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5.7. Transformation of Coordinates Under Rotation of
a Coordinate System
Consider a rectangular Cartesian coordinate system.
Let e, ={1,0,0}, e, ={0,1,0} and e, ={0, 0,1} be orthogonal unit vectors
of that system:
where g;; is the Kronecker delta.

By rotation of the coordinate system, we obtain a new rectangular
coordinate system.
Let e; ={1,0,0}, e, ={0,1,0} and e; ={0, 0,1} be orthogonal unit vectors
of the new coordinate system, that is,
&€} =0;. (11)

By the theorem of direction cosines, the coordinates of the vectors e, e,
and e, in the basis of vectors e;, e, and e; are the direction cosines.
Denote the direction cosines of the vector e, (with n = 1, 2, 3) by
Uy, U,, and u,s, respectively. Then

€=Uy € + Uy, €5 + Ugg €y,

€, = Uy € +Uyy €5 + Uy €3,

€3 =Ug; €] + Ugy €5 + Ugg €5,

j ’

or a short form

3

en = Zunk e|2 (n = 1’ 21 3) (12)

k=1

"Equalities (10) and (11) imply

3 3

Zuikujk :Zukiukj =0; (1,]=1,2,3). (13)

k=1 k=1
Rewrite equalities (12) and (13) in the matrix form.
Let U =[|u; || be the matrix of the direction cosines. If we introduce the
column matrices E =g, || and E'=||&/ ||, then

E=U-E', U.U'=U".U=1,

where UT is the transpose of matrix U, and | is the identity matrix.
Note that the transpose of U is the inverse of U.

Therefore, we can easily obtain the formula of the inverse transformation
(from the old basis to the new one):

E=U-E' = U!E=UWU.E =
E'=U'E=UTE.
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This matrix equality is equivalent to the system of three vector equalities:

el =D Ul (n=1,23).

Now consider the transformation of the coordinates of an arbitrary vector a.
Any vector a can be expressed as the linear combination of basis vectors. If
a,, a, and a, are the coordinates of a in an the old basis, and

a;, a, and aj are the coordinates of a in the new basis, then
3

a:alel+a2e2+azeS:Zaiei, (14)
i=1

3
a:a{e{+age§+age§:2a{e{. (15)

3 3
Therefore, > 8;€ = a, €y .
i=1 -
In view of equality (12) We obtain

.Z;‘a gukek ia&e,; =
Z(Zumajek Zakek

k=1\li=1
that results in the formulas of transformation of the coordinates:

ay = Zuikai =Uyay +Uya, +Ugas. (16a)
Likewise,
a = Zukl = Uy @) + Uy, + Uysa3. (16Db)

Until now we have mterpreted the scalar product of vectors as a scalar
quantity without a formal proof, considering this proposition as the self-
evident truth. A rigorous justification follows from the below theorem.

Theorem: The scalar product is invariant under rotation of the coordinate
system.
Proof: Really, using formulas (16) we obtain

Zakbk ZZuka ZU,kb

k=1li=1
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5.7.1. Rotation of the x,y—Plane Around the z-Axis

Consider a particular case of transformation of the rectangular coordinate
system by rotation of the x,y—plane around the x—axis.

Let & be the angle of the rotation, and r be the radius-vector of a point M.
Then

r=xi+yj=x1r+yj.
By the properties of the scalar product,
i-i=1, i-j=0, i-i"=cos@, i-j =cos(90°+8H)=-sind,
j-i=0, j-j=1, j-i"=cos(90°-H)=sind, j-j =cosd.
Therefore, the scalar products i-r and j-r can be expressed, respectively,
as
X =X'cosé —y'sing (17a)
and
y=X'sind + y'cosé . (17b)
Likewise, formulas of the inverse transformation follow from the scalar
products i’-r and j'-r:
X'=xc0sé + ysind, (18a)
y'=-Xxsind+ ycosd. (18b)
Formulas (17) — (18) are particular cases of general formulas (16).

Example: Let 8 =45°. Express the quadratic form x'y’ in the old
coordinate system.
Solution:  Apply formulas (18), taking into account that

\2

sin@d =cos@ =—:
2

x’=£(><+y), y’=g(—><+y),

X’y’—ii(w X)(y—X) = (y2 - x?).
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ANALYTICAL GEOMETRY
6. Straight Lines

6.1. Equations of Lines
A direction vector of a straight line is a vector parallel to the line.
According to the postulates of geometry, a point M, and a direction vector
g determine the straight line L.
Let M be an arbitrary point on the line. The difference r -, between the
radius-vectors of the points M and M, is a vector in the line, that is,

r-n |l a.
Two parallel vectors are proportional:
r—r=tq (1)

This vector equality is called the vector equation of the line. An arbitrary
number t is said to be a parameter.

Assume that a rectangular Cartesian coordinate system is chosen. Then
equation (1) can be written in the coordinate form as the system of three
linear equations

X=X, +0Q,t
y=Yo+0q,t (2)
Z=17,+(q,t

where X, y and z are running coordinates of a point on the line. Vectors
r, r, and g are represented by their coordinates:

r—r={X-X, Y= Yo, 2— %},
q:{qx’ qyiqz}'

Equations of a line in coordinate form (2) are called the parametric
equations of a line.
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Solving system (2) by elimination of the parameter t, we obtain the
canonical equations of a line:

X=X _Y=Yo_2-2
Oy dy q,

©)

If My(Xos ¥o.20) and M, (X, ¥;,2,) are two given points on a line then the
vector

q={% —Xo, Y1 = Yor 21 — Zo}
joining these points serves as a direction vector of the line.

Therefore, we get the following equations of a line passing through two
given points:

X=X _ Y=Y _2-2% @)
=% Y11= Yo 4-%
Examples:
1) Let L be a line passing through the points M,(10,2) and
M,(3,1-2).

Check whether the point A(7,3,10) lie on the line L.

Solution: Using (4) we get the equations of L:
x-1_ 'y z2-2
2 1 -4
The coordinates of the point A satisfy the equation:
7-1 3 -10-2
2 1 -4
and so A is a point of the line L.
2) Write down the canonical equations of the line passing through the
point A(2, 3,4) and being parallel to the vector q={5, 0, —1}.
Solution: By equation (3), we obtain
X-2 y-3 z1-4
5 0 -1

Note that a symbolical notation yT—C% means the equation y =3.
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6.2. Lines in a Plane
On the x, y—plane, a line is described by the linear equation

Ax+By+C =0. (5)
If My(X,, Y,) IS a point on the line then
Ax, + By, +C =0. (6)

Subtracting identity (6) from equation (5) we obtain the equation of a line
passing through the point M,(X,, Yo):

A(X—=X) +B(y—Y,)=0. (6a)

The expression on the left hand side has a form of the scalar product of the
vectors n={A B} and r—r, ={x—X,, Y — Yo}

n-(r-r,)=0.

Therefore, the coefficients A and B can be interpreted geometrically as the
coordinates of a vector in the x, y—plane, being perpendicular to the line.

AV
NI-R n={4,B)
r
r-r, L n
rO
¥
0 ~ 7

The canonical equation of a line in the x, y—plane has a form
X=X _¥Y=Yo
O ay
where q={ay, g,} is a direction vector of the line.
In the X, y—plane, an equation of a line passing through two given points,
My (Xg, Yo) @and M, (X,, y,), is written as follows

X=X _ Y=Y

X=X Y1 Yo
Sometimes it is helpful to express a straight-line equation in the x, y—plane
as

X Yy
—+==1. 7
=t (7)

In this case, y =0 implies x=a, and x=0 implies y=b.
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Therefore, the quantities a and b are, respectively, the x-intercept and the y-
intercept of a graph of the line. Equation (7) is called an equation of a line
in the intercept form.
A line on the x,y—plane may be also given by the equation in the slope-
intercept form

y=kx+b,
where b is the y-intercept of a graph of the line, and k is the slope of the
line.
If My(X,, Yo) IS @ point on the line, that is, y, =kx,+b, then the point-
slope equation of the line is

Y= Yo =k(X=Xp).
Examples:
1) A line on the x, y—plane is given by the equation
2x—-3y+24=0.

Find: (i) any two points on the line; (ii) the slope of the line; (iii)
the x— and y—intercepts.
Solution:
(i) Setting x =0 we obtainy = 8.
If x=3 theny = 10.
Therefore, the points P(0, 8) and Q(3, 10) lie on the line.

(i) 2x-3y+24=0 = y:%x+8,

Therefore, the slope of the line is k =2/3.
(iii) The y—intercept equals 8. The x—intercept is the solution of the
equation y =0, thatis, x=-12.

2) In the x, y—plane, find the equation of the line passing through the
point M, (5, 3) and being perpendicular to the vector N ={2, —1}.
Solution: Using equation (6a) we obtain
2(x-5)—(y-3)=0 = y=2x-T7.
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3) Let M,(-2,4) and M,(1,6) be the points on a line.
Which of the following points, A(-3,1), B(0,3) and C(3,-6), are
the points on the line?

Solution: In view of the equation of a line passing through two given
points, we have

x+2:y—4 N x+2:y—4
1+2 6-4 3 2
2x—-3y+12=0.
Substituting the coordinates of the points we obtain that
A(—-3,1) is not a point on the line, since
2-(-3)-3-1+12=3=0;
B(0, 3) is not a point on the line, since
2-0+3-3+12=21+0;
C(3,—6) isa point on the line, since
2:3-3-6+12=0=0.

6.3. Angle Between Two Lines

The angle between two lines is the angle between direction vectors of the
lines.

If p={p,, py, P,} and g={a,,q,,q,} are direction vectors of lines, then
the cosine of the angle between the lines is given by the following formula:

p q — quX + pyqy + pzqz
[pl-lal \/p?+p2+p2,/a2 +q +0?
If two lines are perpendicular to each other then their direction vectors are

also perpendicular. This means that the scalar product of the direction
vectors is equal to zero:

p-q=p,0+ p,d, +p,d, =0.

If two lines are parallel then their direction vectors are proportional:
p=cq,

Ccos@ =

where ¢ is a number.
In the coordinate form, this condition looks like

P _Py_P.
Qyx qy q,
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We need direction vectors of lines to find the angle between the lines.
Consider a few particular cases.

1)

2)

3)

4)

Let a line be given by two points M;(X;, ¥;,Z;) and M,(X,, Y,,Z,).
Then
P={X =X, Y- V1, 2, - 21}
Is a direction vector of the line.
If a line in the x, y—plane is given by the equation
Ax+By+C =0,
then we can easily find two points on the line. For instance,
M,(0,—C/B) and M,(-—C/A,0) are two points on the line.
If two lines in the x, y—plane are given by the equations
AXx+By+C, =0 and Ax+B,y+C,=0
then the angle between the lines is equal to the angle between
perpendicular vectors n, ={A, B,} and n, ={A,, B,} to the lines:
cosg=—1M2
In |-Ing |
Note that a perpendicular vector to a line is also called a normal vector
to the line.
If a line in the X, y—plane is given by the equation
§+X :1’
a b
then M,(0,b) and M,(a,0) are two points on the line, and so
p ={a, —Db} is a direction vector of the line.

If two lines in the x, y—plane are given by the equations in the slope-
intercept form
y=kx+b and y=k,x+b,,
and @ is the angle between the lines, then
k2 — kl
1+kk,

tand =

The lines are parallel, if

The lines are perpendicular, if
k,k, =-1.
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Examples:

1) Find the angle & between two lines in the x, y—plane, if they are
given by the following equations:
3X—-4y+1=0 and 2x+y-5=0.
Solution: Normal vectors to the lines are, respectively, n, ={3, -4}
and n, ={2,1}. Therefore,

cos=— 2
I, [-|n, |
3.4+ (=4)-1 8 _8 &

T F (a2 5B 25

2) Find the angle @ between two lines in the x, y—plane, if they are
given by the equations in the slope-intercept form:

y=—/3x+1 and y:§x+5.

Solution: We have k, = —/3 and k, =+/3/3.

Since
kk, = —/3+/3/3=-1,

the lines are orthogonal: & :%.

3) LetA={2 -1}, B={4, 4} and C = {9, 7} be the vertices of a
triangle. Find the equation of the altitude from the vertex A, and
write down the equation in the intercept form.

Solution: If D = {Xx, y} is an arbitrary point on the altitude from the
— —
vertex A, then the vectors AD={x-2,y+1} and BC ={5, 3} are

- -
orthogonal. Therefore, the scalar product of AD and BC is equal to
zero, and we obtain the desired equation:

AD-BC =5(x-2)+3(y+1)=0 =
5x+3y-7=0 =

Xy
RS A
7/5 /3
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6.4. Distance From a Point to a Line

Consider a line in the x, y—plane.
Let n be a normal vector to the line and M(x,, y,) be any point on the

line. Then the distance d from a point P not on the line is equal to the

5
absolute value of the projection of PM on n:

AV

d =|Proj, P || 2

j_')

|72

0 ~ 7

In particular, if the line is given by the equation
Ax+By+C =0,
and the coordinates of the point P are x, and vy, , that is,

n={A, B} and PK/I ={X, — Xo, Y1 — Yo}
then the distance from the point P(x,,y;) to the line is calculated
according to the following formula:
d :|A(X1_Xo)+B(y1_yo)|.
JA? + B2
Since M (x,, Yo) is a point on the line,
AX, + By, +C =0.

Therefore, we obtain
_|Ax +By; +C|

v A% 4+ B?

d

Example: Let ABC be a triangle in x, y—plane with the vertices at the
points A={2,-1}, B={4,4} and C ={9, 7}.
Find the altitude from the vertex A.

Solution: The altitude from the vertex A equals the distance d from the
point A to the line passing through the points B and C.

Find the equation of the line BC:

x=2_y+l 5 ay_12-0.
2 5

Therefore, a normal vector to the line BC is n={5, - 2}.
89



Analytical Geometry
Since AC ={7, 8}, we finally obtain

‘AC-H‘_7-5+8-(—2)_ 19 _19@

Il B2 V29 29

d:

6.5. Relative Position of Lines

Let two lines, L, and L,, be given by their equations, e.g., in the canonical
form:
X —X — -1
L,: 1_ Y=Y _ 1
Px Py P,

: X=X, _Y=Yo -7
L,: = = :
Ox dy g,

where {p,, p,, p,}=p and {q,,q,,q,}=q are direction vectors of the
lines.

In order to determine the relative position of the lines, it is necessary to
consider the equations of both lines as a system of linear equations. Each
lines is described by two linear equations, and so we have the following
system of four linear equations with three unknowns x, y and z:

(X=%)/ Py =(y = Y1)/ Py
(x=x1)/ P =(2-12,)/p,
(X=%,)/a =(y-Y,)/q,
(X=xp)/0y =(2-12,)/q,
Let us analyze all possible cases.

1) Assume that system (1) is inconsistent. Then the lines are either parallel
or skew. If the coordinates of the direction vectors p and q are

proportional, that is,

(1)

P _Py_ P,
qx qy qz
then the lines are parallel; otherwise, they are skew.

2) Suppose that system (1) is consistent, and the rank of the coefficient
matrix equals 3. Then L, and L, are intersecting lines, that is, they have

exactly one point of intersection.

3) If system (1) is consistent, and the rank of the coefficient matrix equals
2, then the lines coincide with each other.
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7. Planes

7.1. General Equation of a Plane

A normal vector to a plane is a perpendicular vector to the plane.
According to geometrical postulates,

- A point and a vector determine a plane.

- Three points determine a plane.

The general equation of a plane in a rectangular Cartesian coordinate
system has the following form:
Ax+By+Cz+D =0, (1)
where X, y and z are running coordinates of a point in the plane.
Let M (X, ¥;,Z,) be apoint in the plane, that is,
Ax, + By, +Cz, + D =0. (2)
Subtracting identity (2) from equation (1) we obtain another form of the
general equation of a plane:
A(X=x;)+B(y-vy,)+C(z-2)=0. 3)
Assume that A, B and C are the coordinates of some vector n.
Then the left hand side of equation (3) is the scalar product of the vectors
nand r—r={x—x,y-Y,,Z—7}:
(r-r)-n=0. (3a)
By the properties of the scalar product this equality implies that the vector
n is perpendicular to the vector r —r,. Since r —r, is an arbitrary vector in
the plane P, n is a normal vector to the plane P.
A ¥
P

n.P?r
nLr-r

'\fH

il
Thus, equation (3) describes a plane that passes through the point
M, (X, ¥1,2;). The coefficients A, B and C can be interpreted as the

coordinates of a normal vector to the plane.
Consider a few particular cases of equation (1).
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1) If D =0 then the plane
Ax+By+Cz=0
passes through the origin.
2) If C=0 then the plane
Ax+By+D=0
Is parallel to the z—axis, that is, it extends along the x-axis.
3) If B =0 then the plane

Ax+Cz+D=0
is parallel to the y—axis.

4) 1f A=0 then the plane
By+Cz+D=0
is parallel to the x—axis.
5) If A=B =0 then the plane

Cz+D=0
is parallel to the x, y—plane, that is, the plane is perpendicular to the
z-axis.
Examples:

1) Let M,(1,-2,3) be a point in a plane, and n={4,5-6} be a
normal vector to the plane. Then the plane is described by the
following equation

4(x-1)+5(y+2)-6(z—3)=0 = 4x+5y-62+24=0.
2) A plane is given by the equation
X—2y+3z2-6=0.

Find a unit normal vector u to the plane and find any two points in
the plane.

Solution: Since n = {1, -2, 3} and |n|= /12 + (-2)% + 32 =~/14 , then

u:|—:|:ﬁ(i ~2j+3K).

Setting x =y =0, we obtain z = 2.

Likewise, ifx=z=0, theny =-3.

Therefore, M,(0,0,2) and M,(0,—3,0) are the points in the given
plane.
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7.2. Equation of a Plane Passing Through
Three Points

Let M, (X, V1,2;), M, (X5, Y,,2,) and M,(Xs, Y3,25) be three given points
inaplane P, and M (X, y,z) be an arbitrary point in P.
Consider three vectors,

MM =r—r={X-X,yY-V¥,Z-2},
MM, =1, -1 ={X, =Xy, ¥, — ¥1,Z, -}
and

N
MMy =16—1 ={X; =X, Y3 = ¥1,Z3 — 7, }.
They all lie in the plane P, and so their scalar triple product is equal to zero:

(r—r)(r,-r)(r-r)=0 =
X=X Y=-Y1 -1
X=X Yo=Y Z,—7|=0 (4)

X3=X Ys—=Y1 23— 4

Equation (4) describes a plane passing through three given points.

Example: Let M,(2,5,-1), M,(2,-3,3) and M;(4,5,0) be points in

a plane.
Find an equation of that plane.

Solution: By equation (4), we have
X—-2 y-5 z+1

2 0 1
2(x—2)-2(y-5-4(z+1)=0 =
2X—-2y—-4z+2=0 =
X—-y—-2z+1=0.
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7.3. Other Forms of Equations of a Plane

1) Let p={py, py, P} and gq=A{qa,,q,,q,} be two vectors that are
parallel to a plane P, and M, (X, y;,2,) be a pointin P.
If r={x,y, z} is the radius-vector of an arbitrary point in the plane P, then
three vectors, r—r, ={x—-x;,y—-Vv,,z—12}, p and g, are coplanar, and so
the scalar triple product is equal to zero:

(r-n)pgq=0.
This equality expresses an equation of a plane in the vector form. It can
also be written in the coordinate form as follows:

X=X Y=Y -7
Py py p, |=0. (5)
Ox ay a.

2) Assume that the general equation of a plane is expressed in the form of
the following equality:

XY 2o (6)
a b c
Then
y=z=0 = x=a,
x=z=0 = y=b,
x=y=0 = z=c.

Therefore, the quantities a, b and c are, respectively, the x-intercept, y-
intercept and z-intercept of the plane.

Equation (6) is called the equation of a plane in the intercept form.
For instance, the equation

describes the plane with the x-, y-, z—intercepts equal 2, -5 and 4,
respectively.
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7.4. Angle Between Two Planes

The angle 6 between two planes equals the angle between their normal
vectors n and m:
n-m
[n|-[m]|
If the planes are given by equations in the general form
Ax+By+C,+D, =0,
Ax+B,y+C,+D, =0,

cosd =

then

AA, +B,B,+C,C,
A2 B2 C7A +BE +C
If two planes are perpendicular to each other then their normal vectors are
also perpendicular:

cosd =

(7)

If two planes are parallel then the normal vectors are proportional:
A_B_G
AZ BZ CZ
Note that the vector product of two non-parallel vectors in a plane gives a
normal vector to the plane. In particular, if a plane is given by three points
M, (X, Y1, 2,) s M,(%,,Y,,2,) and M, (X, ¥5,23), then a normal vector to

the plane is
i i k
- -
n=MM;xMMs=X=% Y,=V1 Z,-7] (8)

X3=X Ys— Y1 2434

Example: Find the angle between two planes P, and P,, if P, passes
through the points M,(-2,2,2), M,(0,5,3) and M,;(-2,3,4), and P,
Is given by the equation

3X-4y+z+5=0,
Solution: A normal vector to the plane P, is determined by
I ] k
m=(2 3 1|=5i—-4j+2k.
01 2

A normal vector to the plane P, is n={3,-4,1}.
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Therefore, the cosine of the angle between the given planes is
3-5+(-4)-(-4)+1-2 o 1n
3+ (—4)? +12 52 + (~4)% + 27 130

cos@ =

7.5. Distance From a Point To a Plane

Assume that a plane P is determined by the equation in the general form:
Ax+By+Cz+D=0. 9)

Let Q(x,, Y, 2;) be a given point not in the plane, and M(X,Yy,z) be an
arbitrary point in P. Then the distance d between the point Q and the plane

P is equal to the absolute value of the projection of QM on n={A B,C}.
: QM n‘

‘Projn QM‘
||

Therefore,
_|AG=x)+B(y-y)) +C(z-2)|
‘ VA2 4 B2 4C2

By equality (9),

Ax+By+Cz=-D,
and so the distance between point Q(x,, y;,z,) and plane (9) is given by
the following formula:

Ax1+By1+Czl+D|
JAZ 1 B? +C2 ‘

d :§ ©

Example: Let the plane be given by the equation
2X+3y—-4z+5=0.

The distance from the point Q(8,—7,1) to the plane is

L _|2843.(1)-4145 4 _
‘ J2% + 3 +(~4)? ‘ \/_ 29\/_
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7.6. Relative Position of Planes

Let two planes, P, and P,, be given by their general equations
P: Ax+By+Ciz+D, =0,
P: Ax+B,y+C,z+D, =0.

Consider the system of two linear equations
Ax+B,y+C,z+D, =0,

{A2x+ B,y+C,z+D, =0.

1) If system (10) is inconsistent, then the planes are parallel, and so the
coordinates of the normal vectors n, ={A,B;,C,} and n, ={A,,B,,C,} are

proportional:

(10)

A_B_G D

AQ BZ C2 D2
2) If system (10) is consistent and the equations are proportional to each
other, then P, is just the same plane as P,:

A_B _C_D

AQ BZ C2 D2
3) If system (10) is consistent, and the rank of the coefficient matrix equals
2, then P, and P, are intersecting planes. The locus of these distinct

intersecting planes is exactly one line L. The vector product of normal
vectors to the planes P, and P, is the vector, which is perpendicular to the

normal vectors, and so it lies in both planes. Therefore, n,xn, is a
direction vector | of the intersection line L:

n,

n,xn,=1|L

In a similar way we can consider the relative position of any number of
planes. The only difference is the number of possible cases.
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7.7. Relative Position of a Plane and a Line

Let a plane P be given by the equation in the general form
Ax+By+Cz+ D=0,
and a line L be determined by the system of two linear equations
Ax+By+C;z+D, =0,
{A2x+ B,y+C,z+D, =0.
To investigate the relative positions of the line and the plane, consider the
integrated system of equations:
Ax+By+Cz+D =0,
Ax+By+Ciz+D; =0, (11)
Ax+B,y+C,z+ D, =0.
There are three possible cases.

1) If the rank of the coefficient matrix equals 3, then the system is
consistent and has a unique solution {Xy,Yq,Zp}. It means that

M (Xo, Yo,Zp) 1S the point of intersection of the plane and the line.

2) If system (11) is consistent, and the rank of the coefficient matrix
equals 2, then the line L lies in the plane P.
3) If system (11) is inconsistent then the line L is parallel to the plane P.

7.8. The Angle Between a Plane and a Line

Let « be the angle between a normal vectors n to a plane and a direction
vector | of a line, and £ be the angle between the plane and the line.

Then « and S are complementary angles shown in the figure below.

Ny

Therefore,

sin f=cosa =
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8. Quadratic Curves

8.1. Circles

A circle is a set of points in a plane that are equidistant from a fixed point.
The fixed point is called the center. A line segment that joins the center
with any point of the circle is called the radius.

In the x,y—plane, the distance between two points M (x,y) and M,(X,, ¥,)

equals

JO=%0) + (Y= ¥o)
and so the circle is described by the equation

(x=%0)* +(y-Yo)* =R%, 1)
where X, and y, are the coordinates of the center, and R is the radius.
AY
pro-o M(x,y)
o1
X
0 X, X

Equation of a circle centered at the origin

x* +y? =R? (2)
is known as the canonical equation of the circle.
If t is a real parameter, then

X = Rcost
y =Rsint

are the parametric equations of the circle centered at the origin with radius

R.
F

N,

By elimination of the parameter t, we return to canonical equation (2):
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x? = R%cos’ t .
y? =R?sin®t
Likewise,
X =X, + Rcost
y =Y, +Rsint
are the parametric equations of the circle centered at the point M, (x,, Y,)
with radius R.

Examples:
1) The circle is given by the equation

X2 —4x+y?+6y=12.
Find the radius and the coordinates of the center.

Solution: Transform the quadratic polynomial on the left-hand side of
the equation by adding and subtracting the corresponding constants to
complete the perfect squares:

X2 —4x=(Xx*—4x+4)-4=(x-2)° -4
Y2 +6y=(y* +6y+9)-9=(y+3)*-9.
Then the given equation is reduced to the form
(x-2)*+(y+3)* =5,
which describes the circle centered at the point M,(2,—3) with radius 5.
2) Let
X2 +2x+y? -8y +17=0.
Find the canonical equation of the circle.
Solution:
X2+2x+y?-8y+17=0 = (X*+2x+1)+(y*-8y+16)=0 =
(x+1)* +(y—4)* =0.
The radius of the circle equals zero, that means the given equation
corresponds to a null point circle.

3) The equation
X2 +2x+y2+5=0
can be reduced to the form
(x+1)? + y? =4,

which has no solutions. In this case they say that the equation
describes an imaginary circle.
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8.2. Ellipses
An ellipse is a plane curve, which is represented by the equation
X2 y2
—+ == 3
2t 3)

in some Cartesian coordinate system.

Equation (3) is called the canonical equation of an ellipse, or the equation
of an ellipse in the canonical system of coordinates. The positive quantities
2a and 2b are called the axes of the ellipse. One of them is said to be the
major axis, while the other is the minor axis.

In the canonical system, the coordinate axes are the axes of symmetry, that
means if a point (X,y) belongs to the ellipse, then the points (—x,y),

(x,—y) and (—x,—Yy) also belong to the ellipse.
The intersection points of the ellipse with the axes of symmetry are called
the vertices of the ellipse. Hence, the points (+a,0) and (0,=b) are the

vertices of ellipse (3).
AN

o YN

-b

If a = b = R then equation (3) is reduced to equation (2) of a circle. Thus,
one can consider a circle as a specific ellipse.

The parametric equations of the ellipse have the following form:
{x = acost

y =bsint
One can easily eliminate the parameter t to obtain the canonical equation of
the ellipse:

2
X
= =cos’t ,
a X Yy

= —2+—2=l.
y2 . 2 a® b
F:S”] t

The equation

v \2 v )2
(%) (=32
a b
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corresponds to the ellipse with the center at the point M,(X,, Y,) - The axes
of symmetry of this ellipse pass through M,, being parallel to the
coordinate axes.

8.2.1. Properties of Ellipses

Consider an ellipse, which is given by equation (3) with the major axis 2a.
Two fixed points, F (-c,0) and F,(c,0), are called the focuses of the

ellipse, if equality c? =a? —b? is satisfied.
Correspondingly, the distances r, and r, from any point M(X,y) of the
ellipse to the points F, and F, are called the focal distances.

The ratio c_ ¢ is called the eccentricity of ellipse.
a

Note that 0 < ¢ <1.
AN
b Mx.y)

i F
i -C c Vg \x
r

oo R

1) Let x be the abscissa of a point of ellipse (3). Then the focal distances
of the point can be expressed as follows:
L=a+Xxe, (4a)
r,=a—Xe. (4b)
Proof: By the definition, the distance between two points, M(x,y) and
F.(-c,0),is

f=(x+c)2+y>2.
Consider the expression under the sign of the radical.
By substituting

2 2 2 b2
y =@ -x)=,
a
c=ae and b?=a?-c’=a’(l-¢&?)
in 1%, we obtain
2 =(x+c)%+y? =x*+2cx+c% + y?

= X% +2axe +a’e’ +(a% — x*)(1-¢&°),
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which results in
2 _ .2 2 2 2
=a°+2aXxe+X¢=(a+xe)”.
Likewise,

I, =\/(X—C)2 +y? = rf=a’-2axe+x%e’=(a-xe)’.
Since a+ x ¢>0, the above formulas give the desired statement.

2) For any point of ellipse (3), the sum of the focal distances is the
constant quantity 2a:

n+r,=2a. (5)
This property follows from formulas (4a) and (4b).

- : i a .
Two symmetric lines passing at the distance — from the center of an ellipse
&

and being perpendicular to the major axis are called the directrices.

a =4
& AY =5

\Directrices /

3) For any point of ellipse (3), the ratio of the focal distance to the
distance from the corresponding directrix is equal to the eccentricity of
the ellipse:

h _h

— =t =c 6
4, d, (6)
g 1 | 4

¥ =— = Y =

L]
ey

Proof: By Property 1 and in view of the fact that
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a a
d=—+x and d,=—-X,
& &

we obtain the desired results.

4) Assume that the curve of an ellipse has the mirror reflection property.
If a point light source is located at a focus of the ellipse, then rays of
light meet at the other focus after being reflected.

—

(
N

In other words, at any point of an ellipse, the tangent line forms equal
angles with the focal radiuses.

5) The orbital path of a planet around the sun is an ellipse such that the
sun is located at a focus.

Example: Reduce the equation

2x% +4x+3y* 12y =1
to the canonical form. Give the detailed description of the curve.
Solution: Complete the perfect squares.

2x% +4x+3y?-12y=1 =
2(x* +2x+1) +3(y* —4y+4)=15 =
2(x+1)%+3(y-2)*=15 =
2 2
(x+D* (y-2)°
15/2 5
Thus, the given equation describes the ellipse with the center at the
point (-1, 2).
The major semi-axis equals /15/2 , and the minor semi-axis is +/5. The

focuses are located on the horizontal line y = 2. The distance between
each focus and the center is

c=+va’-b’ :1/%—5:\/2:@.

The eccentricity equals

¢ A5 1 43
‘a5 3 3
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8.3. Hyperbolas

A hyperbola is a plane curve, which can be represented in some Cartesian

coordinate system by one of the below equations
2 2 2 2

x* y x ¥y _
S T Tea 0
J\y J\y
b
; ;
-1 1 Cd s
/)‘\

Equations (7) are called the canonical equations of a hyperbola. The
corresponding coordinate system is said to be the canonical system. In this
coordinate system, the coordinate axes are axes of symmetry, that is, if a
point (x,y) belongs to the hyperbola then the points (-x,y), (x,—y) and
(—x,—Y) also belong to the hyperbola.

The intersection points of the hyperbola with the axis of symmetry are
called the vertices of the hyperbola. Any hyperbola has two vertices.

If a =b then the hyperbola is called an equilateral hyperbola.

The equations

(x=x) _(y=v)* _ 4
a’ b?
describe hyperbolas with the center at the point M,(X,,Y,). The axes of
symmetry of the hyperbolas pass through M,, being parallel to the

coordinate axes.

Consider a hyperbola, which is given by the equation
X2 y2
2 b ©
Two fixed points, F (-c,0) and F,(c,0), are called the focuses of the

hyperbola, if the equality c? =a® +b? is satisfied.
Correspondingly, the distances r, and r, from any point M(X,y) of the
hyperbola to the points F, and F, are called the focal distances.
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The ratio c_ ¢ is called the eccentricity of hyperbola.
a

Note that ¢ > 1.

8.3.1. Properties of Hyperbolas

1) Let x be the abscissa of a point of hyperbola (8). Then the focal
distances of the point are the following:
nL=x(xe+a), (9a)
r,=%(xe—-a). (9b)

In the above formulas we have to apply the sign ‘+’ for the points on
the right half-hyperbola, while the sign ‘—* is used for the points on the
left half-hyperbola.

This property is similar to the corresponding one of ellipses.
The distance between two points M (x,y) and F,(-c,0) is

rlz\/(x+c)2+y2,

where
2
2 2 2 b
y =(x"-a%)—,
a
c=ac and b?=c’—-a’=a’(s?-1).
Therefore,
7 =(X+C)*+y® =x*+2cx+Cc* + y?
= X% +2axe+a’e’ + (x> —a?)(e* -1
= x%e% + 2axe +a’ = (xe +a)°.
Likewise,

=y(x-c)?+y> = rZ=(xe—a)’.
Since x e +a>0 for the points of the right half-hyperbola, and xe+a <0
for points of the left half-hyperbola, we have got the desired results.
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2) For any point of hyperbola (8), the difference between the focal
distances is the constant quantity (£2a):
nL—r,==2a. (10)
The sign depends on whether the point lies on the right or left half-
hyperbola.
The proof is straightforward. We only need to apply Property 1.

The directrices of hyperbola (8) are two vertical lines x = ig.

&
Y a4 _a
X =- 2 X =g
—-a& ac X
F F,

~

Directrices

3) For any point of hyperbola (8) the ratio of the focal distance to the
distance from the corresponding directrix is equal to the eccentricity of

the hyperbola.
hob_, (11)

4) Two straight lines y = ig are the asymptotes of hyperbola (8).

y:—a J\y y:%

e
S

Proof: Express the variable y from equality (8) in the explicit form.
X2 2 b2
rtl = Yed-ah)
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y:igx/xz—a2 .

If x approaches infinity, then constant a® is a negligible quantity, that is,
y>+2x.
a

Hence, the property.

5) Assume that the curve of a hyperbola has the mirror reflection
property. If a point light source is located at a focus of the hyperbola,
then the other focus is the image source of rays that being reflected.

The drawing illustrates that reflected rays form a divergent beam.

Example: Reduce the equation

X2 —6x+2y? +8y =0
to the canonical form. Give the detailed description of the curve.
Solution: Complete the perfect squares.

X —6x—-2y*-8y=7 =
(X2 —6x+9)—2(y° +4y+4)=8 =

(x—3)2-2(y+2)*=8.
Dividing both sides by 8 we obtain the equation

(x=3 _(y+2 _,

8 4 ’

which describes the hyperbola with the center at the point (3, -2). The
focuses are located on the horizontal line y = —2. The distance between
each focus and the center of the hyperbola is

c=+va’+b?=8+4=412=3/2.

The eccentricity of the hyperbola equals
c_ 32 _ 3

a 48 2
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8.4. Parabolas

A parabola is the locus of points, which are equidistant from a given point
F and line L. The point F is called the focus. The line L is called the
directrix of the parabola.

Let the focus be on the x-axis and the directrix be parallel to the y-axis at

the distance p from the focus as it is shown in the figure below.
AN

PP
I
7

‘ 0

'\fH

L
Then the focal distance of a point M (X, y) is
r=y(x-p/2’+y’
and the distance from M to the directrix is
d=x+p/2.

Therefore, due to the transformations

r=d = J(x-p/2°+y’=x+p/2 =

(x=p/2)* +y* = (x+p/2)?,

we obtain the following equation of a parabola: y* = 2px.

JL; yZ _ 21?_?1"
M(x,¥)

4 X

ARNGE >

- NF (T,O)
L
If the focus is located on the left of the directrix, then we obtain
y'=-2px p

/

T ../
'\I'H

Some more cases are shown in the drawings below.
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2_
Ay X=lpy

Fll
FII X

L x*=2py

'\fH

Parabola properties:
1) Any parabola has the axis of symmetry, which passes through the

vertex of the parabola, being perpendicular to the directrix.
2) Letan ellipse be the mirror reflection curve. If a point light source is
located at a focus of the ellipse, then rays of light are parallel after

being reflected.
4
/ ./; '

AN

L

The equations
(Y- Yo)* =£2p(X—Xp),

(X—=%0)? =£2p(y - ¥o)
describe parabolas with the vertex at the point M, (X,, Yo) -

Example: Reduce the equation
X? +4x -3y =-5.
to the canonical form. Give the detailed description of the curve.

Solution:
X +4x-3y=-5 =

(x+2° =3y -2).

This equation describes the parabola with the vertex at the point
M, (-2,5/3). The axis of symmetry is a line x =—2 which is parallel to

the y—axis.
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8.5. Summary

Let F be a point (focus) and L be a line (directrix) of a quadric curve.
Consider the locus of points such that the ratio of the distances to the focus
and to the directrix is a constant quantity (eccentricity),

628. (12)

If 0<é& <1 then equation (12) describes an ellipse.

If &£ =1 then equation (12) describes a parabola.

If £>1 then (12) is the equation of a hyperbola.

Thus, the curves of the second order can be classified by the value of the
eccentricity.

From the algebraic point of view, the equation

a, x> +bx+a,y’ +h,y+azxy+c=0

describes a curve of the second order in the x,y—plane, provided that at least
one of the leading coefficients is non-zero.

The presence of the term Xy means that the axes of symmetry of the curve
are rotated with respect to the coordinate axes.

The linear term x (or y) means that the center (or vertex) of the curve is
shifted along the corresponding axis.

Examples:

1) The equation
Xy = const

describes a hyperbola, whose axes of symmetry are rotated on the angle
45° with respect to the coordinate axes.
2) If ¢ — 0, then a hyperbola

X —y?=c
collapses to the pair of the lines y = +x.
3) The equation

x2+2y?=-1

has no solutions and corresponds to an imaginary ellipse.

111



References

K.P. Arefiev, O.V. Boev, A.l. Nagornova, G.P. Stoljarova, A.N.
Harlova. Higher Mathematics, Part 1. Textbook. Tomsk, TPU Press,
1998, 97p.

Murray H. Plotter, Charles B. Morrey. Intermediate Calculus,
Springer, 1985.

V.V. Konev. Mathematics: Preparatory Course. Textbook. Tomsk.
TPU Press, 2009, 104p.

V.V. Konev, The Elements of Mathematics. Textbook. Tomsk. TPU
Press, 2009, 140p.

V.V. Konev, Higher Mathematics, Part 2. Textbook. Tomsk. TPU
Press, 2009. 114p.

V.V. Konev. Mathematics: Algebra, Workbook. TPU Press, 2009,
60p.

V.V. Konev, Mathematics: Geometry and Trigonometry,
Workbook. Tomsk. TPU Press, 2009, 34p.

V.V. Konev, The Elements of Mathematics. Workbook, Part 1.
Tomsk. TPU Press, 2009, 54p.

V.V. Konev, The Elements of Mathematics. Workbook, Part 2.
Tomsk. TPU Press, 2009, 40p.

112



Valery V. Konev, Associate Professor of the Higher Mathematics Department,
TPU, Ph.D.

Linear Algebra, Vector Algebra and Analytical Geometry

Textbook

Editor: V.A. Kilin, Professor, of the Higher Mathematics Department, TPU, D.Sc.



	TITLE
	CONTENTS
	LINEAR ALGEBRA
	Chapter 1. MATRICES
	1.1. Basic Definitions
	1.2. Matrix Operations
	1.3. Types of Matrices
	1.4. Kronecker Delta Symbol
	1.5. Properties of Matrix Operations

	Chapter 2. DETERMINANTS
	2.1. Permutations and Transpositions
	2.2. General Definition
	2.3. Properties of Determinants
	2.4. Calculation of Determinants
	2.4.1. Expanding a Detrminant by a row or Column
	2.4.2. Evaluation of Determinants by Elementary Operations on Matrices


	Chapter 3. INVERSE MATRICES
	3.1. Three Lemmas
	3.2. Theorem of Inverse Matrix
	3.2.1. Examples of Calculations of Inverse Matrices

	3.3. Calculation of Inverse Matrices by Elementary Transformation

	Chapter 4. SYSTEMS OF LINEAR EQUATIONS
	4.1. Matrix Rank
	4.2. Main Definitions
	4.3. Gaussian Elimination
	4.3. Gaussian Elimination
	4.3.1. Some Examples

	4.4. Homogeneous Systems of Linear Equations
	4.4.1. Examples

	4.5. Cramer’s Rule
	4.6. Cramer’s General Rule


	VECTOR ALGEBRA
	Chapter 5. VECTORS
	5.1. Basic Definitions
	5.2. Geometric Interpretation
	5.2.1. Vectors in Three-Dimensional Space
	5.2.2. Linear Vector Operations
	5.2.3. Projection of a Vector in a Given Direction
	5.2.4. Properties of Linear Vector Operations

	5.3. Decomposition of Vectors into Components
	5.3.1. Rectangular Orthogonal Basis
	5.3.2. Linear Dependence of Vectors
	5.3.3. Vector Bases

	5.4. Scalar Product of Vectors
	5.4.1. Properties of the Scalar Product
	5.4.2. Examples
	5.4.3. Direction Cosines

	5.5. Vector Product
	5.5.1. Properties of the Vector Product
	5.5.2. Examples

	5.6. Scalar Triple Product
	5.6.1. Properties of the Scalar Triple Product
	5.6.2. Examples

	5.7. Transformation of Coordinates Under Rotation of
	5.7.1. Rotation of the x,y-Plane Around the z-Axis



	ANALYTICAL GEOMETRY
	Chapter 6. STRAIGHT LINES
	6.1. Equations of Lines
	6.2. Lines in a Plane
	6.3. Angle Between Two Lines
	6.4. Distance From a Point to a Line
	6.5. Relative Position ol lines

	Chapter 7. Planes
	7.1. General Equation of a Plane
	7.2. equation of a Plane Passing Through three points
	7.3. Other Forms of Equations of a Plane
	7.4. Angle Between Two Planes
	7.5. Distance From a Point to a Plane
	7.6. Relative Position of Planes
	7.7. Relative Position of a Plane and a Line
	7.8. The Angle Between a Plane and a Line

	Chapter 8. QUADRATIC CURVES
	8.1. Circle
	8.2. Ellipses
	8.2.1. Properties of Ellipses

	8.3. Hyperbolas
	8.3.1. Properties of Hyperbolas

	8.4. Parabolas
	8.4. Summary


	References



